US ERA ARCHIVE DOCUMENT

Solutia Inc. 575 Maryville Centre Drive St. Louis, Missouri 63141

Tel: 314-674-3312 Fax: 314-674-8808

gmrina@eastman.com

January 15, 2016

Ms. Carolyn Bury - LU-9J U.S. EPA Region 5 Corrective Action Section 77 West Jackson Boulevard Chicago, IL 60604-3507

Re:

PCB Groundwater Quality Assessment Program

4th Quarter 2015 Data Report

Solutia Inc., W. G. Krummrich Plant, Sauget, IL

Dear Ms. Bury:

Enclosed please find the PCB Groundwater Quality Assessment Program 4th Quarter 2015 Data Report for Solutia Inc.'s W. G. Krummrich Plant, Sauget, IL.

If you have any questions or comments regarding this report, please contact me at (314) 674-3312 or gmrina@eastman.com

Sincerely,

Gerald M. Rinaldi

Manager, Remediation Services

Zea M. Kill

Enclosure

cc: Distribution List

DISTRIBUTION LIST

PCB Groundwater Quality Assessment Program 4th Quarter 2015 Data Report Solutia Inc., W. G. Krummrich Plant, Sauget, IL

USEPA

Stephanie Linebaugh USEPA Region 5 - SR6J, 77 West Jackson Boulevard, Chicago, IL 60604

Solutia

Donn Haines

500 Monsanto Avenue, Sauget, IL 62206-1198

GROUNDWATER MONITORING REPORT

PCB GROUNDWATER QUALITY ASSESSMENT PROGRAM SOLUTIA INC., W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared For: Solutia Inc.

575 Maryville Centre Drive St. Louis, MO 63141 USA

Submitted By: Golder Associates Inc.

820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

January 2016 140-3345

A world of capabilities delivered locally

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	FIELD ACTIVITIES	2
2.1	Water Level Measurement	2
2.2	Groundwater Sample Collection	2
2.3	Quality Assurance and Sample Handling	3
2.4	Decontamination and Investigation Derived Waste	4
3.0	QUALITY ASSURANCE	4
4.0	OBSERVATIONS	5
4.1	Shallow Hydrogeologic Unit	5
4.2	Middle/Deep Hydrogeologic Unit	5
4.3	Mann-Kendall Trend Analysis	5
5.0	CLOSING	
6.0	REFERENCES	7

i

List of Figures

Figure 1 Site Location Ma

Figure 2 Former PCB Manufacturing Area Monitoring Well Locations
Figure 3 Potentiometric Surface Map Middle/Deep Hydrogeologic Unit

Figure 4 PCB Results (SHU)

Figure 5 PCB Results (MHU/DHU)

List of Tables

Table 1 Monitoring Well Gauging Information
 Table 2 Groundwater Analytical Results
 Table 3 Mann-Kendall Trend Analysis

List of Appendices

Appendix A Groundwater Purging and Sampling Forms

Appendix B Chains-of-Custody

Appendix C Quality Assurance Report

Appendix D Groundwater Analytical Results (including data validation reports)

1

1.0 INTRODUCTION

Golder Associates Inc. (Golder) is pleased to submit this report summarizing the 4th Quarter 2015 (4Q15) PCB groundwater sampling activities at the Solutia Inc. (Solutia) W.G. Krummrich (WGK) facility (Site) in Sauget, Illinois. The facility is located at 500 Monsanto Avenue, Sauget, Illinois as shown on Figure 1. The 4Q15 sampling event was performed in general accordance with the Revised PCB Groundwater Quality Assessment Program Work Plan (Work Plan) (Solutia 2009).

The scope of work detailed in the Work Plan is summarized below.

Ten (10) monitoring wells are sampled during the PCB event. The locations of the monitoring wells are shown on Figure 2 and the sample locations are included in the table below.

Area	Location Relative to Area	Sample Identification
	Source Area Well	PMA-MW-4S
	Source Area Well	PMA-MW-4D
Former PCB Manufacturing		PMA-MW-1S
		PMA-MW-1M
	Downgradient	PMA-MW-2S
		PMA-MW-2M
		PMA-MW-3S
		PMA-MW-3M
		PMA-MW-5M
		PMA-MW-6D

Water levels in the monitoring wells are measured quarterly and total depths are measured in the 1st quarter of each year.

During the quarterly sampling events, monitoring wells are sampled for the following polychlorinated biphenyl (PCB) isomer groups or homologs: monochlorobiphenyl; dichlorobiphenyl; trichlorobiphenyl; tetrachlorobiphenyl; pentachlorobiphenyl; hexachlorobiphenyl; heptachlorobiphenyl; octachlorobiphenyl; nonachlorobiphenyl; and decachlorobiphenyl.

2.0 FIELD ACTIVITIES

Golder conducted 4Q15 sampling events on November 12 and November 13, 2015. Activities were performed in general accordance with the Work Plan.

2.1 Water Level Measurement

Prior to sampling during the 4Q15 event, Golder performed a synoptic round of water level measurements at 77 monitoring wells and piezometers on October 29 and October 30, 2015. The following monitoring well and piezometer series are included in the PCB program:

- BSA-series
- CPA-series
- GM-series
- K-series
- PS-MW-series
- PMA-series
- Piezometer clusters installed for Sauget Area 2 RI/FS and WGK CA-750 Environmental Indicator projects

An oil/water interface probe was used to measure the water level (to 0.01 feet) and, if present, detect and measure the thickness of non-aqueous phase liquid (NAPL). During the 4Q15 sampling event, NAPL was not detected in monitoring wells or piezometers. Total depths are measured during the 1st quarter of each year. The 4Q15 well gauging information is shown on Table 1. The information collected from the Middle Hydrogeologic Unit (MHU) and the Deep Hydrogeologic Unit (DHU) was used to create a groundwater potentiometric surface map, as shown on Figure 3. The MHU and DHU are the primary migration pathways for constituents present in the groundwater at the Site.

2.2 Groundwater Sample Collection

Monitoring wells sampled during the 4Q15 PCB event were purged and sampled using low-flow sampling techniques, low-density polyethylene tubing (LDPE) and a submersible pump. The pump intake was placed at approximately the middle of the screened interval for each well. Purging was conducted at a rate of approximately 300 mL/min to reduce drawdown. Drawdown was measured throughout purging activities to ensure that it did not exceed 25% of the distance between the pump intake and the top of the screen. Measurement of field parameters began once the flow rate and drawdown were stable. Parameters were measured for each system volume purged using a SmartTROLL™ multi-parameter meter. The system volume includes the volume of the tubing, the volume of the pump and the volume of flow-through cell containing the multi-parameter device. Samples were collected after field parameters were stabilized within the ranges below for three (3) consecutive measurements:

- Dissolved Oxygen (DO): +/- 10% or +/- 0.2 mg/L, whichever is greatest
- Oxidation-Reduction Potential (ORP): +/- 20 mV
- pH: +/-0.2 standard units
- Specific Conductivity: +/- 3%

The flow rate was adjusted as needed to maintain approximately 300 mL/min during sampling activities. To reduce possible sample cross contamination, the flow-through cell was bypassed and gloves were replaced prior to sampling.

Sample bottles were provided by TestAmerica Laboratories, Inc. (TestAmerica) for analysis of PCBs by United States Environmental Protection Agency (USEPA) Method 680. Groundwater purging and sampling forms are included in Appendix A.

2.3 Quality Assurance and Sample Handling

One (1) analytical duplicate (AD), one (1) equipment blank (EB) and one (1) matrix spike/matrix spike duplicate (MS/MSD) pair were collected during the 4Q15 PCB sampling event. Sample bottles were labeled with the date and time of sample collection, sampler initials, analysis requested, preservative used, and sample identification based on the following nomenclature "PMA-MW#-MMYY-QA/QC" where:

- "PMA" denotes "PCB Manufacturing Area" and "MW#" denotes monitoring well number
- "MMYY" denotes month and year of sampling quarter, e.g.: November (4th quarter), 2015 (1115)
- "QA/QC" denotes QA/QC sample
 - AD Analytical Duplicate
 - EB Equipment Blank
 - MS or MSD Matrix Spike or Matrix Spike Duplicate

Sample information was recorded on a chain-of-custody (COC) that included project identification, sample identification, date and time of sample collection, analysis requested, preservative used, sample matrix and type, number of sample containers, sampler signature, and date COC was completed. Copies of the COCs are included in Appendix B.

Directly after sampling, sample bottles were placed in an iced cooler to maintain a sample temperature of approximately 4°C. Prior to sample shipment, samples and ice were placed inside two (2) contractor trash bags. The bags were tied and the cooler was sealed between the lid and sides with a signed and dated custody seal. Samples were shipped overnight via FedEx to the TestAmerica facility in Savannah, Georgia.

2.4 Decontamination and Investigation Derived Waste

Sampling equipment was decontaminated prior to mobilizing to the Site, between sample locations and prior to demobilizing from the Site. Non-dedicated sampling equipment was decontaminated between samples with a non-phosphatic detergent solution and a deionized water rinse.

Investigation derived waste (IDW) was placed in 55-gallon drums, labeled with the generation date and staged for disposal by Solutia. IDW such as gloves and other disposable sampling equipment was bagged for disposal by Solutia.

3.0 QUALITY ASSURANCE

Sample results were provided by the TestAmerica laboratory in electronic format and reviewed for quality and completeness by Golder in accordance with the Work Plan. Sample results are included in Appendix D. Results were submitted in two (2) sample delivery groups (SDGs) as follows:

Sample Delivery Group (SDG)	Sample Identification			
	PMA-MW-1M-0515			
	PMA-MW-1S-0515			
	PMA-MW-2M-0515			
KPM067	PMA-MW-2M-0515-AD			
N WOOT	PMA-MW-2S-0515			
	PMA-MW-2S-0515-EB			
	PMA-MW-5M-0515			
	PMA-MW-6D-0515			
	PMA-MW-3M-0515			
KPM068	PMA-MW-3S-0515			
	PMA-MW-4D-0515			
	PMA-MW-4S-0515			

Golder completed validation of the analytical data following the general guidelines in Section 3.4 Data Review and Validation of the Work Plan. The Work Plan specifies that the most recent version of the national data validation guidelines be used for data review. The following guidelines were generally used:

■ USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June 2008

Although some data required qualifications due to quality control criteria that were not achieved, the data were deemed usable. The completeness for the data set was 100%.

4.0 OBSERVATIONS

Groundwater analytical data for the 4Q15 PCB event is discussed below and presented in Table 2. Sample results are also shown for the SHU and the MHU/DHU in Figures 4 and 5, respectively.

5

4.1 Shallow Hydrogeologic Unit

Historically, dense non-aqueous phase liquid (DNAPL) has been periodically detected in PMA-MW-4S, located in the former PCB Manufacturing Area. DNAPL was not detected in PMA-MW-4S during the 4Q15 event. A groundwater sample was collected at PMA-MW-4S and PCBs were detected at a concentration of 96 μ g/L. PCBs were detected in one (1) of three (3) monitoring wells in the SHU downgradient of the former PCB Manufacturing Area (PMA-MW-3S) at a concentration of 0.69 μ g/L. PCBs were not detected in monitoring wells PMA-MW-1S and PMA-MW-2S.

4.2 Middle/Deep Hydrogeologic Unit

PCBs were detected in five (5) of the six (6) monitoring wells located in the MHU and DHU. Results are summarized below.

- Former PCB Manufacturing Area: PCBs were detected at a concentration of 1.86 μg/L in PMA-MW-4D.
- Downgradient of Former PCB Manufacturing Area: PCBs were detected in four (4) of five (5) monitoring wells downgradient of the former PCB Manufacturing Area at concentrations of 0.61 μg/L (PMA-MW-1M), 9.5 μg/L / 10 μg/L (PMA-MW-2M and AD), 0.80 μg/L (PMA-MW-3M), and 0.19 μg/L (PMA-MW-6D). PCBs were not detected in PMA-MW-5M.

4.3 Mann-Kendall Trend Analysis

Mann-Kendall trend analyses of total PCBs in groundwater samples from select monitoring wells within (PMA-MW-4D) or downgradient (PMA-MW-1M, -2M, -3S, -3M, and -6D) of the former PCB Manufacturing Area were performed. Results are shown on Table 3. The trends using analytical data from the 4Q15 PCB event appeared similar to historical trends. There was an increasing trend in PCB concentrations at monitoring wells PMA-MW-1M, PMA-MW-2M, and PMA-MW-4D. Concentrations of PCBs show either no trend or stable at monitoring wells PMA-MW-3S, PMA-MW-3M, and PMA-MW-6D.

5.0 CLOSING

Golder appreciates the opportunity to assist Solutia Inc. with the PCB Groundwater Quality Assessment Program sampling events. Please contact the undersigned if you need additional information.

6

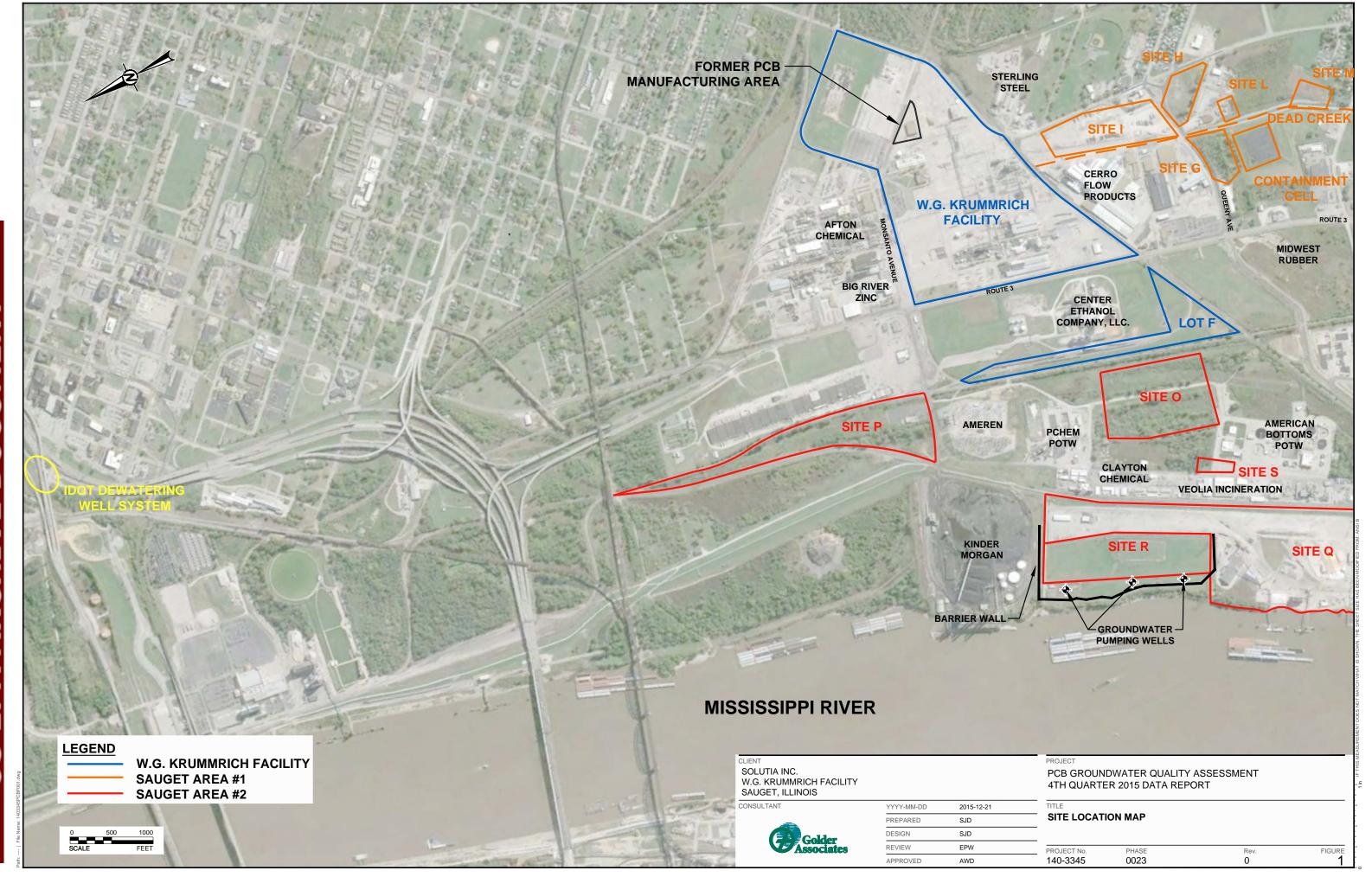
Sincerely,

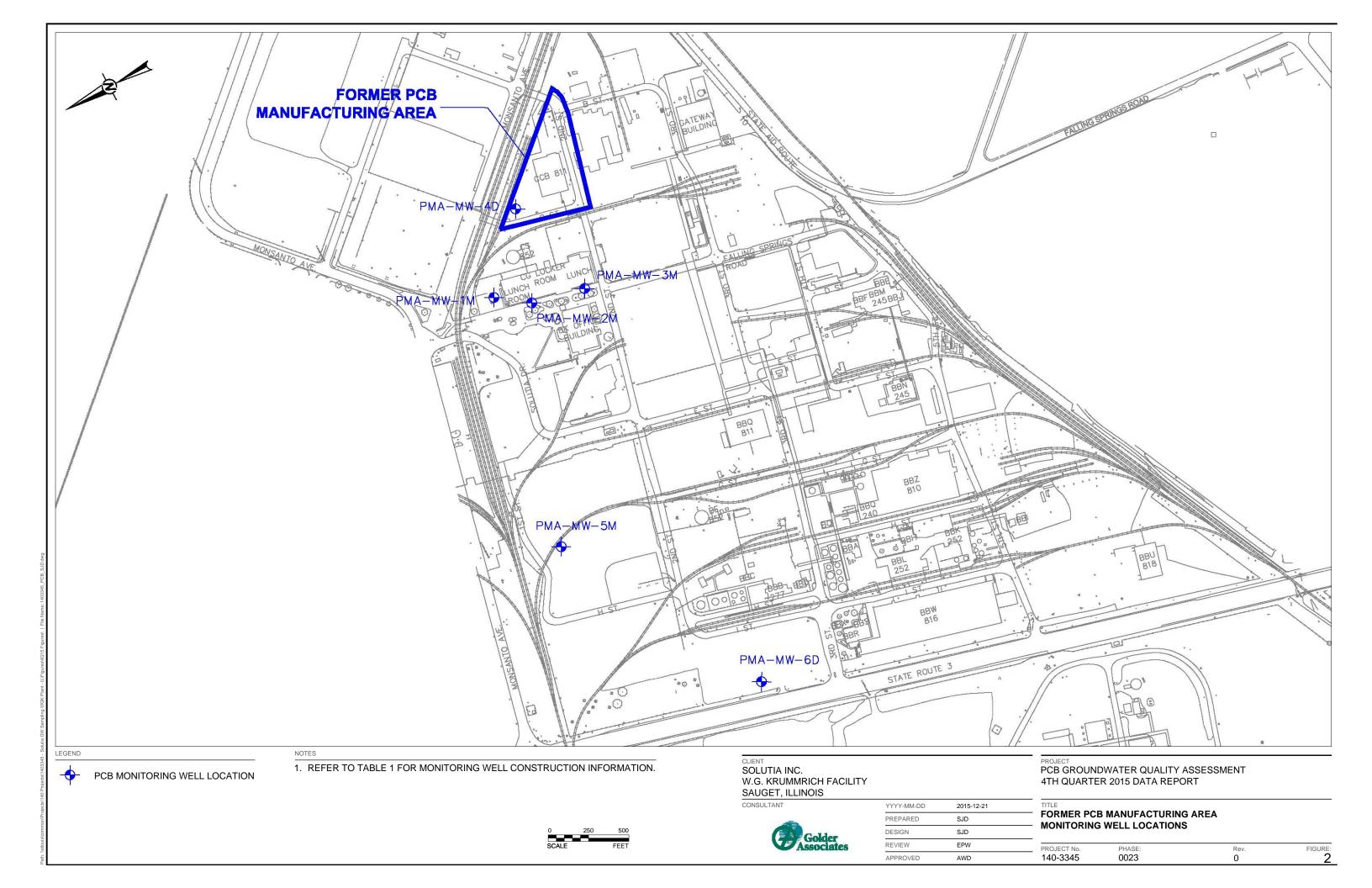
GOLDER ASSOCIATES INC.

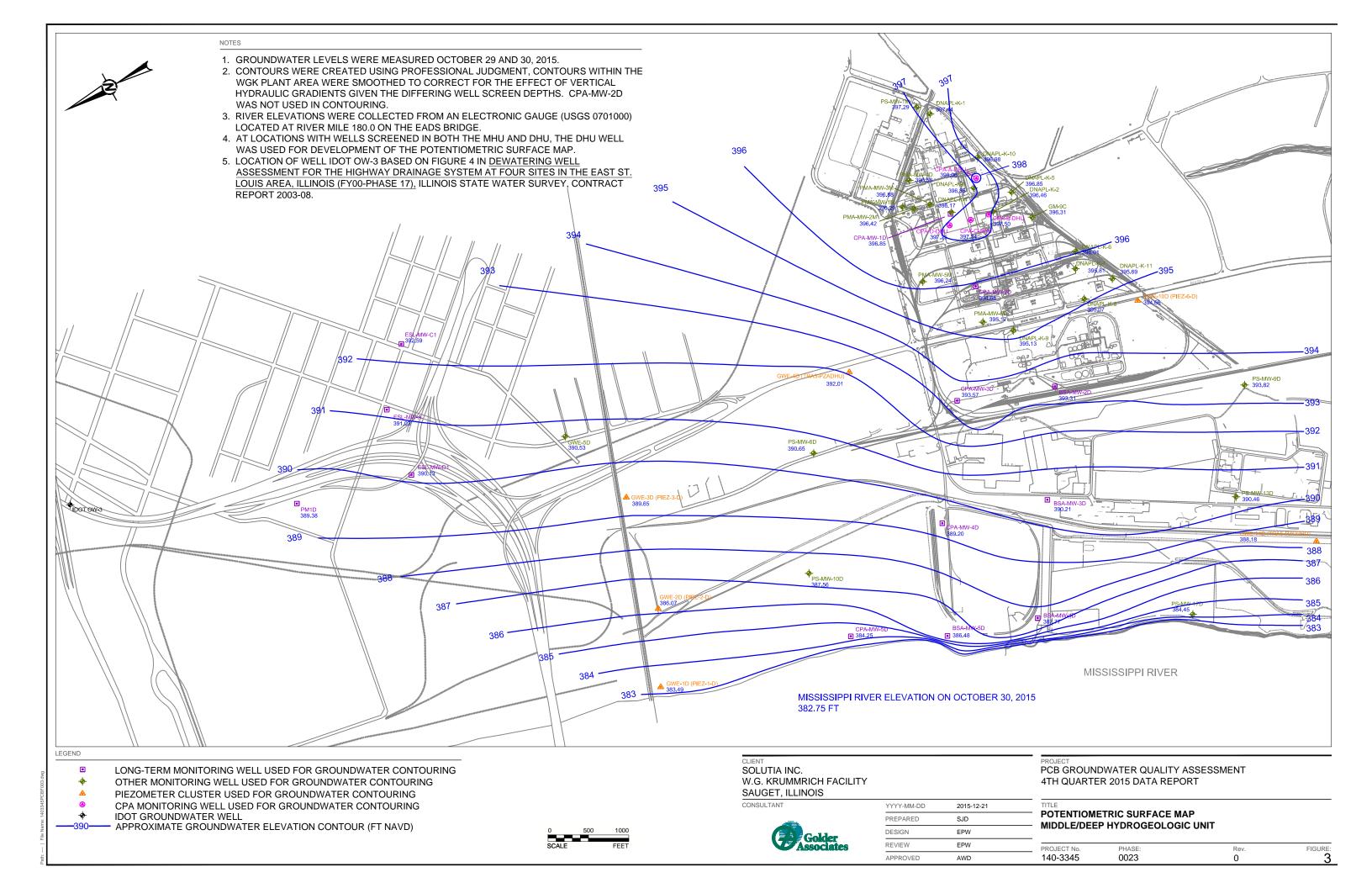
Amanda W. Derhake, Ph.D., P.E. Senior Project Engineer

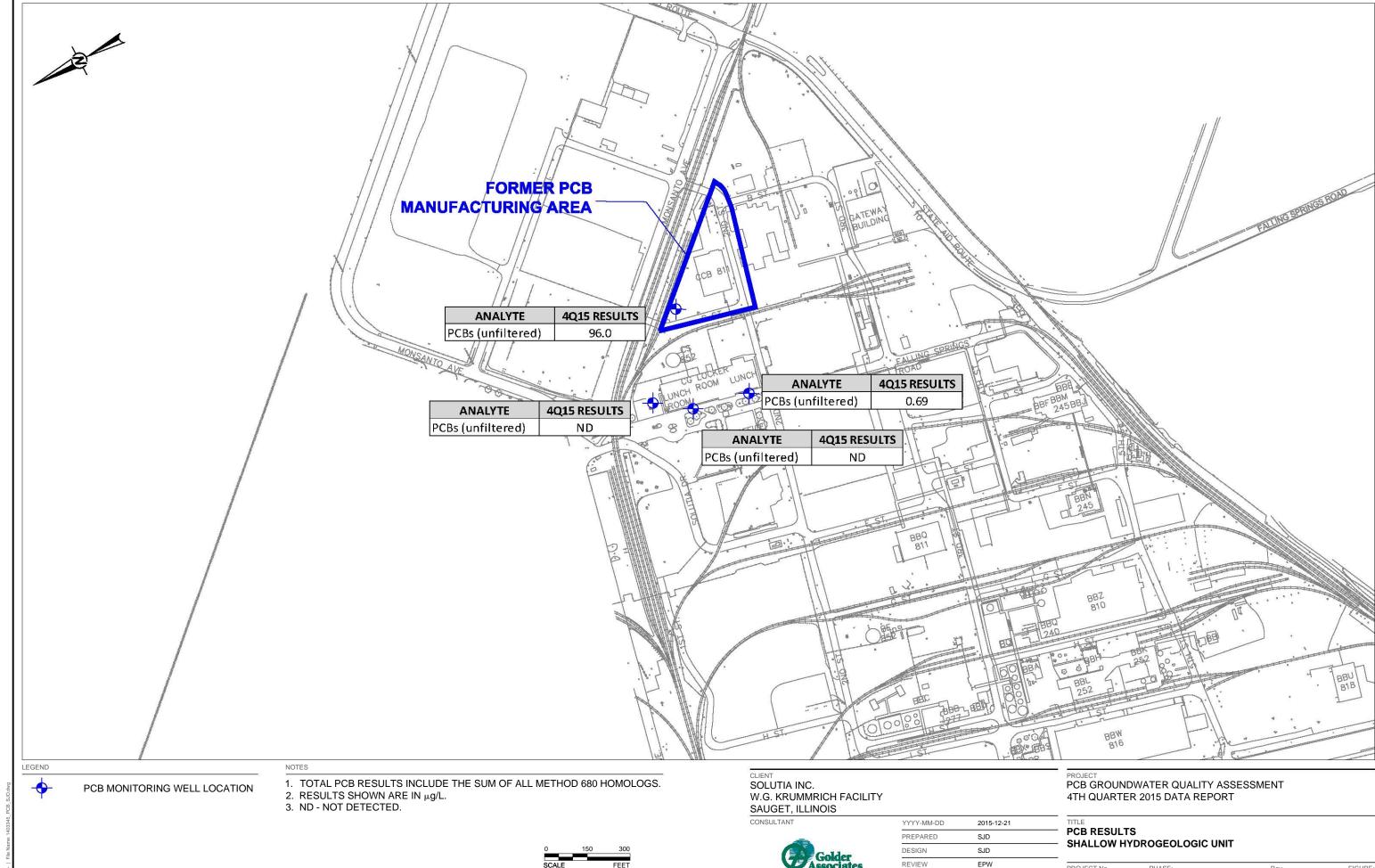
Mark N. Haddock, R.G., P.E. Associate, Senior Consultant

Mach N. efallor

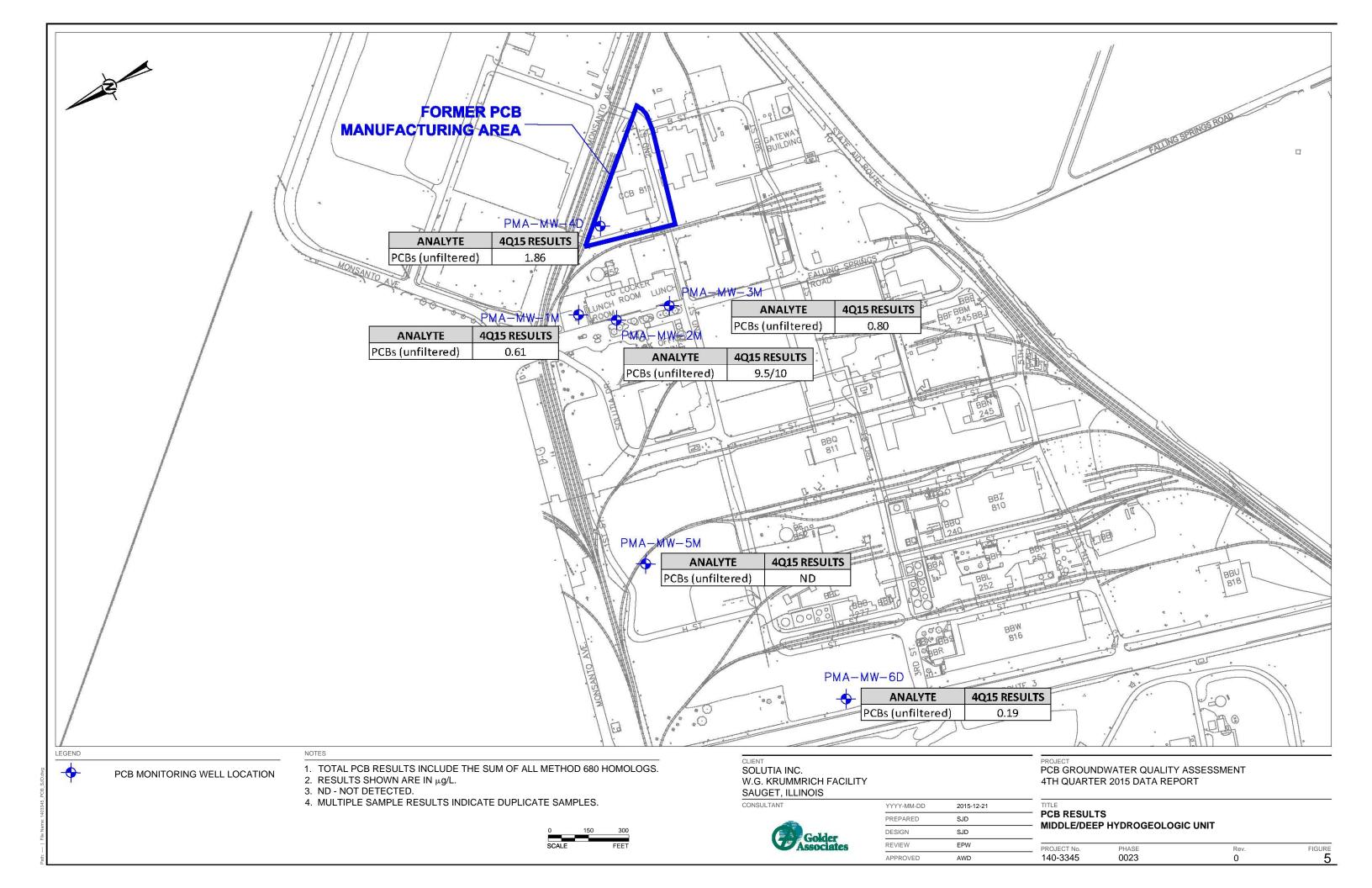

Solutia Inc, 2009. Revised PCB Groundwater Quality Assessment Program Work Plan, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, May 2009.


USEPA, 2008. Contract Laboratory Program national Functional Guidelines for Superfund Organic Methods Data Review.


7



FIGURES



PROJECT No. 140-3345

APPROVED

PHASE: 0023

FIGURE:

TABLES

Table 1 Monitoring Well Gauging Information 4Q15 PCB Groundwater Quality Assurance Program Solutia Inc., W.G. Krummrich Facility Sauget, Illinois

Solution Continue Casing Elevation Continue	er Level vation ¹ (ft) 97.33 96.21 96.26 96.91 96.29 96.42 96.88
Series Screen S	vation ¹ (ft) 07.33 06.21 06.66 06.91 06.29 06.42 06.88
Elevation City Ci	97.33 96.21 96.66 96.91 96.29 96.42
The color of the	97.33 96.21 96.66 96.91 96.29 96.42 96.88
PMA-MW-1S 410.30 410.06 20.18 25.18 390.12 385.12 12.73 NP 24.93 397 PMA-MW-2S 412.27 411.66 22.94 27.94 389.33 384.33 15.45 NP 27.34 390 PMA-MW-3S 412.37 412.06 22.71 27.71 389.66 384.66 15.40 NP 27.34 390 PMA-MW-4S 411.09 410.43 20.99 25.99 390.10 385.10 13.52 NP 25.38 390 MHU 380-350 ft NAVD 88 PMA-MW-1M 410.32 410.08 54.54 59.54 355.78 350.78 13.79 NP 59.60 390 PMA-MW-3M 412.26 411.93 56.87 61.87 355.39 350.39 15.51 NP 61.27 390 PMA-MW-3M 412.74 410.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 390 PS-MW-1M 409.37 412.59 </td <td>96.21 96.66 96.91 96.29 96.42</td>	96.21 96.66 96.91 96.29 96.42
PMA-MW-2S 412.27 411.66 22.94 27.94 389.33 384.33 15.45 NP 27.34 396 PMA-MW-3S 412.37 412.06 22.71 27.71 389.66 384.66 15.40 NP 27.40 399 PMA-MW-4S 411.09 410.43 20.99 25.99 390.10 385.10 13.52 NP 25.38 396 MHU 380-350 ft NAVD 88 8 8 8 8 8 8 8 8 9 9 9.59 350.78 13.79 NP 59.60 396 396 396 396.39 15.51 NP 61.27 399 396.59 350.39 15.30 NP 46.05 399 396.59 350.29 350.22 NP 61.87	96.21 96.66 96.91 96.29 96.42
PMA-MW-3S 412.37 412.06 22.71 27.71 389.66 384.66 15.40 NP 27.40 396 PMA-MW-4S 411.09 410.43 20.99 25.99 390.10 385.10 13.52 NP 25.38 396 MHU 380-350 ft NAVD 88 While Manay 10 410.08 54.54 59.54 355.78 350.78 13.79 NP 59.60 396 PMA-MW-1M 410.32 410.08 54.54 59.54 355.78 350.39 15.51 NP 61.27 396 PMA-MW-3M 412.26 411.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 396 PMA-MW-5M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 397 DHU 350 ft NAVD 88 - Bedrock 85A-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-2D 412.	96.66 96.91 96.29 96.42
PMA-MW-4S 411.09 410.43 20.99 25.99 390.10 385.10 13.52 NP 25.38 396 MHU 380-350 ft NAVD 88 PMA-MW-1M 410.32 410.08 54.54 59.54 355.78 350.78 13.79 NP 59.60 396 PMA-MW-2M 412.26 411.93 56.87 61.87 355.39 350.39 15.51 NP 61.27 396 PMA-MW-3M 412.36 412.10 57.07 62.07 355.39 350.29 15.21 NP 61.81 399 PMA-MW-5M 411.27 410.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 399 PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 39 DHU 350 ft NAVD 88 - Bedrock BSA-MW-2D 412.00 415.74 107.02 112.02 305.89 300.89 25.53 NP 77.00 <	96.91 96.29 96.42 96.88
MHU 380-350 ft NAVD 88 PMA-MW-1M 410.32 410.08 54.54 59.54 355.78 350.78 13.79 NP 59.60 39.60 PMA-MW-2M 412.26 411.93 56.87 61.87 355.39 350.39 15.51 NP 61.27 39.70 PMA-MW-5M 412.36 412.10 57.07 62.07 355.29 356.410 14.73 NP 56.83 39.77 PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 39.70 DHU 350 ft NAVD 88 - Bedrock 8 8 8 8 21.82 NP 77.00 39.70 39.73 343.08 338.08 21.82 NP 77.00 39.70 39.73 343.08 338.08 21.82 NP 77.00 39.72 343.08 338.08 21.82 NP 77.00 39.72 343.08 338.08 21.82 NP 114.75 39.72 35.72 NP	96.29 96.42 96.88
PMA-MW-1M 410.32 410.08 54.54 59.54 355.78 350.78 13.79 NP 59.60 390 PMA-MW-2M 412.26 411.93 56.87 61.87 355.39 350.39 15.51 NP 61.27 390 PMA-MW-3M 412.36 412.10 57.07 62.07 355.29 350.29 15.22 NP 61.81 390 PMA-MW-5M 411.27 410.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 390 PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 393 DHU 350 ft NAVD 88 - Bedrock 88 8 8 2.82 NP 46.05 393 BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89)6.42)6.88
PMA-MW-2M 412.26 411.93 56.87 61.87 355.39 350.39 15.51 NP 61.27 396 PMA-MW-3M 412.36 412.10 57.07 62.07 355.29 350.29 15.22 NP 61.81 396 PMA-MW-5M 411.27 410.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 396 PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 397 DHU 350 ft NAVD 88 - Bedrock 8 8 8 8 15.30 NP 77.00 393 BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 396 BSA-MW-4D 420.80 420.49 115.85 120.85 304.95)6.42)6.88
PMA-MW-3M 412.36 412.10 57.07 62.07 355.29 350.29 15.22 NP 61.81 396 PMA-MW-5M 411.27 410.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 396 PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 39 DHU 350 ft NAVD 88 - Bedrock BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 399 BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 388 BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 386 CPA-MW-1D 408.62	6.88
PMA-MW-5M 411.27 410.97 52.17 57.17 359.10 354.10 14.73 NP 56.98 399.10 PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 393 DHU 350 ft NAVD 88 - Bedrock BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 399 BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 380 BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 386 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 399 CPA-MW-2D<	
PS-MW-1M 409.37 412.59 37.78 42.78 371.59 366.59 15.30 NP 46.05 393 DHU 350 ft NAVD 88 - Bedrock BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 396 BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 38 BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 386 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 396 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 399 CPA-MW-3D <td>16.24</td>	16.24
DHU 350 ft NAVD 88 - Bedrock BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 390 BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 38 BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 38 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 39 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 39 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 39 CPA-MW-4D <td></td>	
BSA-MW-2D 412.00 415.13 68.92 73.92 343.08 338.08 21.82 NP 77.00 393 BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 390 BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 383 BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 386 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 396 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 396 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 <td>7.29</td>	7.29
BSA-MW-3D 412.91 415.74 107.02 112.02 305.89 300.89 25.53 NP 114.75 390 BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 38 BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 38 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 396 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 394 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 385 CPA-MW-5D 411.03 413.15 107.63 </td <td></td>	
BSA-MW-4D 425.00 424.69 118.54 123.54 306.46 301.46 36.92 NP 123.12 38. BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 38 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 39 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 394 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 383 CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 </td <td>3.31</td>	3.31
BSA-MW-5D 420.80 420.49 115.85 120.85 304.95 299.95 34.01 NP 120.89 386 CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 396 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 394 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 385 CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 395 DNAPL-K-2 407.94 407.72 97.63<	0.21
CPA-MW-1D 408.62 412.23 66.12 71.12 342.50 337.50 15.38 NP 74.69 396 CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 394 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 385 CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 395 DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80<	37.77
CPA-MW-2D 408.51 408.20 99.96 104.96 308.55 303.55 13.52 NP 104.56 394 CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 383 CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 393 DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.	36.48
CPA-MW-3D 410.87 410.67 108.20 113.20 302.67 297.67 17.10 NP 112.76 393 CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 388 CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 393 DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102	6.85
CPA-MW-4D 421.57 421.20 116.44 121.44 305.13 300.13 32.00 NP 120.98 385 CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 397 DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102	4.68
CPA-MW-5D 411.03 413.15 107.63 112.63 303.40 298.40 28.90 NP 114.64 384 DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 397 DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100	3.57
DNAPL-K-1 413.07 415.56 108.20 123.20 304.87 289.87 18.12 NP 123.10 393 DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 395 DNAPL-K-8 408.56 411.38 102	39.20
DNAPL-K-2 407.94 407.72 97.63 112.63 310.31 295.31 11.26 NP 112.40 396 DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 395 DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 395	34.25
DNAPL-K-3 412.13 415.91 104.80 119.80 307.33 292.33 19.06 NP 123.28 396 DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 399 DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 399	7.44
DNAPL-K-4 409.48 412.53 102.55 117.55 306.93 291.93 16.36 NP 118.21 396 DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 399 DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 399	6.46
DNAPL-K-5 412.27 411.91 102.15 117.15 310.12 295.12 15.06 NP 116.54 396 DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 399 DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 395	6.85
DNAPL-K-6 410.43 410.09 102.47 117.47 307.96 292.96 14.08 NP 116.87 396 DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 399 DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 399	6.17
DNAPL-K-7 408.32 407.72 100.40 115.40 307.92 292.92 11.91 NP 115.31 395 DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 395	6.85
DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 395	6.01
DNAPL-K-8 408.56 411.38 102.65 117.65 305.91 290.91 16.31 NP 117.56 395	5.81
	5.07
DNAPL-K-9 406.45 405.97 97.42 112.42 309.03 294.03 10.84 NP 111.05 399.03	5.13
DNAPL-K-10 413.50 413.25 105.43 120.43 308.07 293.07 16.27 NP 120.26 396	6.98
DNAPL-K-11 412.20 411.78 105.46 120.46 306.74 291.74 16.09 NP 120.18 395	5.69
GM-9C 409.54 411.21 88.00 108.00 321.54 301.54 14.90 NP 108.23 396	6.31
GWE-1D 412.80 415.60 117.00 127.00 295.80 285.80 32.11 NP 128.22 383	3.49
	36.07
	39.65
GWE-4D 406.05 405.74 74.00 80.00 332.05 326.05 13.73 NP 78.75 393	2.01
	0.53
	4.66
	88.18
PMA-MW-4D 411.22 410.88 68.84 73.84 342.38 337.38 14.30 NP 73.38 396	6.58
PS-MW-6D 404.11 406.63 102.32 107.32 304.31 299.31 15.98 NP 109.81 390	5.17
	95.17 90.65
	0.65
PS-MW-17D 420.22 423.26 121.25 126.25 298.97 293.97 38.81 NP 133.90 384	90.65 93.82

Notes

ft - feet

bgs - below ground surface btoc - below top of casing NP - no product observed

NR - not reported

SHU - shallow hydrogeologic unit MHU - middle hydrogeologic unit DHU - deep hydrogeologic unit Prepared By: SJD 12/11/2015 Checked By: EPW 12/21/2015 Reviewed By: AWD 1/8/2016

¹ - Elevations based on North American Vertical Datum (NAVD) 88 datum.

 $^{^{\}rm 2}$ - Total depths are measured annually during the first quarter of each year.

Table 2 Groundwater Analytical Results 4Q15 PCB Groundwater Quality Assurance Program Solutia Inc., W.G. Krummrich Facility Sauget, Illinois

	PCBs (μg/L)										
Sample Identification	Sample Date	Monochlorobiphenyl	Dichlorobiphenyl	Trichlorobiphenyl	Tetrachlorobiphenyl	Pentachlorobiphenyl	Hexachlorobiphenyl	Heptachlorobiphenyl	Octachlorobiphenyl	Nonachlorobiphenyl	Decachlorobiphenyl
SHU											
PMA-MW-1S-1115	11/12/2015	<0.099	<0.099	<0.099	<0.20	<0.20	<0.20	<0.30	<0.30	<0.50	<0.50
PMA-MW-2S-1115	11/12/2015	<0.10	<0.10	<0.10	<0.20	<0.20	<0.20	<0.30	<0.30	<0.50	<0.50
PMA-MW-3S-1115	11/13/2015	0.50	0.19	<0.098	<0.20	<0.20	<0.20	<0.29	<0.29	<0.49	<0.49
PMA-MW-4S-1115	11/13/2015	2.8 D	12 D	19 D	18 D	11 D	16 D	15 D	2.2 D	<2.5	<2.5
MHU/DHU											
PMA-MW-1M-1115	11/12/2015	0.61	<0.10	<0.10	<0.20	<0.20	<0.20	< 0.31	< 0.31	<0.51	<0.51
PMA-MW-2M-1115	11/12/2015	9.5 D	<0.49	<0.49	<0.98	<0.98	<0.98	<1.5	<1.5	<2.4	<2.4
PMA-MW-2M-1115-AD	11/12/2015	10 D	<0.52	<0.52	<1.0	<1.0	<1.0	<1.5	<1.5	<2.6	<2.6
PMA-MW-3M-1115	11/13/2015	0.80	<0.10	<0.10	<0.20	<0.20	<0.20	<0.30	<0.30	<0.50	<0.50
PMA-MW-4D-1115	11/13/2015	0.92	0.94	<0.099	<0.20	<0.20	<0.20	<0.30	<0.30	<0.49	<0.49
PMA-MW-5M-1115	11/12/2015	<0.099	<0.099	<0.099	<0.20	<0.20	<0.20	<0.30	<0.30	<0.49	<0.49
PMA-MW-6D-1115	11/12/2015	0.19	<0.10	<0.10	<0.20	<0.20	<0.20	<0.30	<0.30	<0.51	<0.51

Notes

PCBs - polychlorinated biphenyls

μg/L - micrograms per liter

< - result is non-detect, less than the reporting limit

D - compound is analyzed at a dilution; result is an estimated value

AD - analytical duplicate

Bold - indicates concentration greater than reporting limit

SHU - shallow hydrogeologic unit

MHU - middle hydrogeologic unit

DHU - deep hydrogeologic unit

Prepared By: SJD 12/22/2015 Checked By: JSI 1/7/2016 Reviewed By: AWD 1/8/2016

Table 3
Mann-Kendall Trend Analysis
4Q15 PCB Groundwater Quality Assessment Program
W.G. Krummrich Facility
Sauget, IL

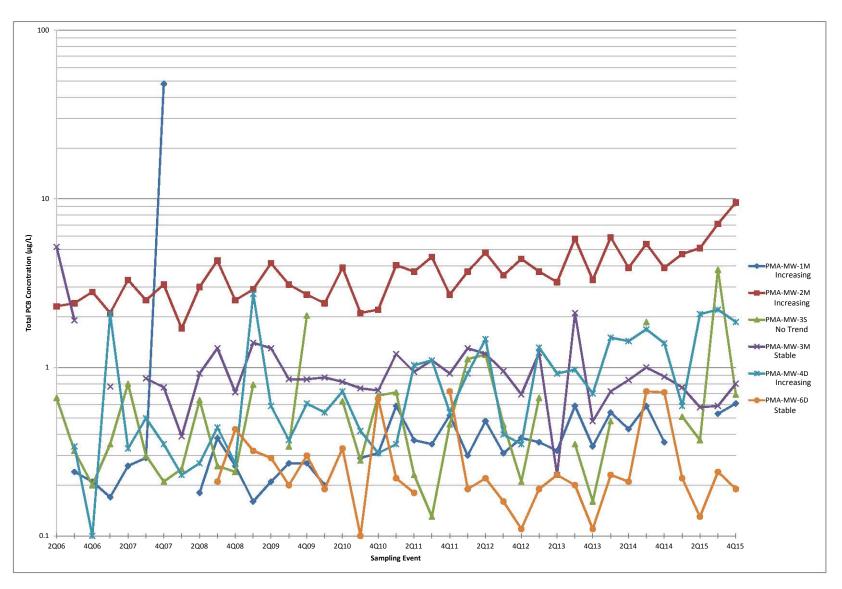
Event	Overten	Total PCB Concentration (μg/L)								
Number	Quarter	PMA-MW-1M	PMA-MW-2M	PMA-MW-3S	PMA-MW-3M	PMA-MW-4D	PMA-MW-6D			
1	2Q06	ND	2.3	0.66	5.18	NA	NA			
2	3Q06	0.24	2.4	0.32	1.90	0.34	NA			
3	4Q06	0.21	2.8	0.20	ND	0.10	NA			
4	1Q07	0.17	2.1	0.35	0.77	2.07	NA			
5	2Q07	0.26	3.3	0.80	ND	0.33	NA			
6	3Q07	0.29	2.5	0.30	0.86	0.50	NA			
7	4Q07	48	3.1	0.21	0.76	0.35	NA			
8	1Q08	ND	1.7	0.25	0.39	0.23	NA			
9	2Q08	0.18	3.0	0.64	0.92	0.27	NA			
10	3Q08	0.38	4.3	0.26	1.30	0.44	0.21			
11	4Q08	0.26	2.5	0.24	0.71	0.27	0.43			
12	1Q09	0.16	2.9	0.79	1.40	2.73	0.32			
13	2Q09	0.21	4.14	ND	1.30	0.59	0.29			
14	3Q09	0.27	3.1	0.34	0.85	0.37	0.20			
15	4Q09	0.27	2.7	2.03	0.85	0.61	0.30			
16	1Q10	0.20	2.4	ND	0.87	0.54	0.19			
17	2Q10	ND	3.9	0.63	0.82	0.72	0.33			
18	3Q10	0.29	2.1	0.28	0.75	0.42	0.10			
19	4Q10	0.31	2.199	0.68	0.73	0.31	0.65			
20	1Q11	0.59	4.04	0.71	1.20	0.35	0.22			
21	2Q11	0.37	3.7	0.23	0.94	1.03	0.18			
22	3Q11	0.35	4.52	0.13	1.10	1.10	ND			
23	4Q11	0.52	2.7	0.46	0.92	0.54	0.72			
24	1Q12	0.30	3.7	1.12	1.30	0.92	0.19			
25	2Q12	0.48	4.79	1.19	1.20	1.47	0.22			
26	3Q12	0.31	3.52	0.46	0.95	0.40	0.16			
27	4Q12	0.38	4.4	0.21	0.69	0.35	0.11			
28	1Q13	0.36	3.7	0.66	1.22	1.31	0.19			
29	2Q13	0.32	3.2	ND	0.23	0.92	0.23			
30	3Q13	0.59	5.8	0.35	2.10	0.97	0.20			
31	4Q13	0.34	3.3	0.16	0.48	0.70	0.11			
32	1Q14	0.54	5.9	0.48	0.72	1.50	0.23			
33	2Q14	0.43	3.9	ND	0.84	1.43	0.21			
34	3Q14	0.59	5.4	1.86	1.00	1.68	0.72			
35	4Q14	0.36	3.9	ND	0.88	1.39	0.71			
36	1Q15	ND	4.7	0.51	0.76	0.59	0.22			
37	2Q15	ND	5.1	0.37	0.58	2.07	0.13			
38	3Q15	0.53	7.1	3.8	0.59	2.2	0.24			
39	4Q15	0.61	9.5	0.69	0.80	1.86	0.19			
Co	efficient of Variation	4.66	0.40	1.07	0.84	0.74	0.65			
	n-Kendall Statistic (S)	234	316	46	-86	276	-34			
	Confidence in Trend ¹	>99.9%	>99.9%	76.6%	88.6%	>99.9%	75.3%			
	Concentration Trend	Increasing	Increasing	No Trend	Stable	Increasing	Stable			

Notes

NA - not analyzed

ND - non-detect (values detected below the detection limit)

Data from 2Q06 to 1Q14 was compiled by former consultant


Prepared By: SJD 12/22/2015 Checked By: EPW 12/23/2015 Reviewed By: AWD 1/8/2016

¹-confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0)

> 90% - probably increasing or decreasing

> 95% - Increasing or Decreasing

Table 3 Mann-Kendall Trend Analysis 4Q15 PCB Groundwater Quality Assessment Program W.G. Krummrich Facility Sauget, IL

APPENDIX A GROUNDWATER PURGING AND SAMPLING FORMS

Project Information:

Operator Name

Company Name

Project Name

Site Name

SmartTroll
11/12/2015

Pump Information:
Pump Model/Type
Tubing Type
Tubing Diameter
Tubing Length
Pump Placement from TOC

SS Monsoon
Tubing Length
28.44 ft
Pump Placement from TOC

Pumping Information:
Final Pumping Rate

SS Monsoon
C.19 in
C.22.43 ft
C.22.43 ft

SOO mL/min

Well Information:		Pumping Information:	
	DDAA DAVA 4C		200 1 /
Well Id	PMA-MW-1S	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	349 mL
Well Total Depth	24.93 ft	Calculated Sample Rate	69 sec
Depth to Top of Screen	19.93 ft	Sample Rate	69 sec
Screen Length	5 ft	Stabilized Drawdown	0.02 ft
Depth to Water	12.73 ft		

EPW

PCB

Golder Associates

W.G. Krummrich

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	15:19:22	18.61	7.57	1184.38	1.83	0.41	25.62
	15:20:11	18.81	7.54	1172.71	2.00	0.34	28.60
Last 5 Readings	15:21:00	19.04	7.51	1170.88	1.69	0.33	30.72
	15:21:49	19.21	7.49	1176.73	1.69	0.30	32.37
	15:22:38	19.30	7.47	1184.88	1.74	0.29	33.74
		0.23	-0.03	-1.83	-0.31	-0.01	2.12
Variance in Last 3 Readings		0.17	-0.02	5.85	0.00	-0.03	1.65
		0.09	-0.02	8.15	0.05	-0.01	1.37

Project Information:

Operator Name

Company Name

Project Name

Site Name

Low-Flow System 11/12/2015 **ISI Low-Flow Log Pump Information:** Pump Model/Type SS Monsoon **Tubing Type LDPE Tubing Diameter** 0.19 in **Tubing Length** 62.80 ft Pump Placement from TOC 57.10 ft

SmartTroll

Well Information: Pumping Information: Well Id PMA-MW-1M **Final Pumping Rate** 300 mL/min Well Diameter 540 mL 2 in System Volume Well Total Depth 59.60 ft Calculated Sample Rate 108 sec Depth to Top of Screen 54.60 ft Sample Rate 108 sec 5 ft Stabilized Drawdown Screen Length 0.00 ft Depth to Water 13.78 ft

EPW

PCB

Golder Associates

W.G. Krummrich

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	14:48:54	18.19	7.40	2170.08	3.68	0.12	-7.62
	14:50:22	18.18	7.36	2169.04	3.83	0.11	-21.05
Last 5 Readings	14:51:50	18.15	7.33	2164.47	2.61	0.09	-31.88
	14:53:18	18.13	7.31	2165.61	2.34	0.09	-42.42
	14:54:48	18.11	7.29	2167.88	2.04	0.08	-51.54
		-0.03	-0.03	-4.57	-1.22	-0.02	-10.83
Variance in Last 3 Readings		-0.02	-0.02	1.14	-0.27	0.00	-10.54
		-0.02	-0.02	2.27	-0.30	-0.01	-9.12

SmartTrollLow-Flow System11/12/2015ISI Low-Flow Log

Project Information:		Pump Information:	
Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	30.83 ft
		Pump Placement from TOC	24.84 ft
Well Information:		Pumping Information:	
Well Id	PMA-MW-2S	Final Pumping Rate	300 mL/min

well illiorillation.		r uniping information.	
Well Id	PMA-MW-2S	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	362 mL
Well Total Depth	27.34 ft	Calculated Sample Rate	72 sec
Depth to Top of Screen	22.34 ft	Sample Rate	72 sec
Screen Length	5 ft	Stabilized Drawdown	0.00 ft
Depth to Water	12.73 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	pH [pH]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	16:37:24	18.39	7.58	1575.29	15.90	0.22	21.78
	16:38:16	18.51	7.56	1561.57	13.90	0.23	24.49
Last 5 Readings	16:39:08	18.68	7.54	1532.56	11.70	0.27	26.55
	16:40:01	18.77	7.51	1505.76	10.40	0.30	28.49
	16:41:02	18.81	7.49	1493.47	8.23	0.33	30.77
		0.17	-0.02	-29.01	-2.20	0.04	2.06
Variance in Last 3 Readings		0.09	-0.03	-26.80	-1.30	0.03	1.94
		0.04	-0.02	-12.29	-2.17	0.03	2.28

Project Information:

Depth to Top of Screen

Screen Length

Depth to Water

SmartTrollLow-Flow System11/12/2015ISI Low-Flow Log

110 sec

0.00 ft

Pump Information:

Sample Rate

Stabilized Drawdown

		•	
Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	65.04 ft
		Pump Placement from TOC	58.77 ft
Well Information:		Pumping Information:	
Well Id	PMA-MW-2M	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	553 mL
Well Total Depth	61.27 ft	Calculated Sample Rate	110 sec

56.27 ft

15.51 ft

5 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	15:57:23	17.60	7.25	2167.45	4.86	0.30	19.42
	15:58:53	17.70	7.24	2198.32	5.85	0.18	5.18
Last 5 Readings	16:00:23	17.79	7.23	2194.65	6.22	0.14	-6.25
	16:01:53	17.79	7.23	2195.07	5.90	0.12	-16.32
	16:03:24	17.80	7.23	2192.10	4.30	0.10	-25.57
		0.09	-0.01	-3.67	0.37	-0.04	-11.43
Variance in Last 3 Readings		0.00	0.00	0.42	-0.32	-0.02	-10.07
		0.01	0.00	-2.97	-1.60	-0.02	-9.25

SmartTrollLow-Flow System11/13/2015ISI Low-Flow Log

Project Information:		Pump Information:	
Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	30.90 ft
-		Pump Placement from TOC	24.90 ft

Well Information:		Pumping Information:	
Well Id	PMA-MW-3S	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	362 mL
Well Total Depth	27.40 ft	Calculated Sample Rate	72 sec
Depth to Top of Screen	22.40 ft	Sample Rate	72 sec
Screen Length	5 ft	Stabilized Drawdown	0.01 ft
Denth to Water	15 40 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	10:45:37	20.32	7.73	2281.48	21.90	0.16	125.67
	10:46:29	20.24	7.69	2277.68	16.20	0.09	137.92
Last 5 Readings	10:47:25	20.14	7.64	2280.57	11.00	0.07	147.84
	10:48:18	20.14	7.61	2279.90	10.30	0.07	157.42
	10:49:12	20.11	7.59	2285.74	7.97	0.07	164.39
		-0.10	-0.05	2.89	-5.20	-0.02	9.92
Variance in Last 3 Readings		0.00	-0.03	-0.67	-0.70	0.00	9.58
		-0.03	-0.02	5.84	-2.33	0.00	6.97

Project Information:

Operator Name

Company Name

Project Name

Site Name

SmartTroll
11/13/2015

Pump Information:
Pump Model/Type
Tubing Type
Tubing Diameter
Tubing Length

Sow-Flow System
ISI Low-Flow Log

SS Monsoon
LDPE
Tubing Diameter
Tubing Length

75.31 ft

59.31 ft

Pump Placement from TOC

Well Information:		Pumping Information:		
Well Id	PMA-MW-3M	Final Pumping Rate	300 mL/min	
Well Diameter	2 in	System Volume	610 mL	
Well Total Depth	61.81 ft	Calculated Sample Rate	121 sec	
Depth to Top of Screen	56.81 ft	Sample Rate	121 sec	
Screen Length	5 ft	Stabilized Drawdown	0.00 ft	
Denth to Water	15 22 ft			

EPW

PCB

Golder Associates

W.G. Krummrich

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	10:13:44	18.79	8.01	2172.70	4.28	0.07	-52.45
	10:15:25	18.86	8.08	2168.79	3.61	0.05	-50.97
Last 5 Readings	10:17:06	18.95	8.12	2169.99	3.17	0.04	-48.16
	10:18:47	19.08	8.15	2161.22	1.27	0.03	-43.88
	10:20:28	19.16	8.16	2164.29	3.51	0.02	-38.54
		0.09	0.04	1.20	-0.44	-0.01	2.81
Variance in Last 3 Readings		0.13	0.03	-8.77	-1.90	-0.01	4.28
		0.08	0.01	3.07	2.24	-0.01	5.34

SmartTroll Low-Flow System 11/13/2015 ISI Low-Flow Log

Project Information:		Pump Information:	
Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	25.88 ft
		Pump Placement from TOC	22.88 ft
· · · · · · · · · · · · · · · · · · ·			

Well Information:		Pumping Information:	
Well Id	PMA-MW-4S	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	334 mL
Well Total Depth	25.38 ft	Calculated Sample Rate	66 sec
Depth to Top of Screen	20.38 ft	Sample Rate	66 sec
Screen Length	5 ft	Stabilized Drawdown	0.06 ft
Denth to Water	13 52 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	12:00:56	19.39	7.29	2423.13	9.45	0.08	46.19
	12:01:43	19.39	7.28	2549.67	8.81	0.07	44.80
Last 5 Readings	12:02:31	19.35	7.28	2633.66	9.72	0.06	43.57
	12:03:20	19.30	7.29	2655.08	8.23	0.06	41.50
	12:04:15	19.30	7.29	2703.16	8.71	0.05	38.75
		-0.04	0.00	83.99	0.91	-0.01	-1.23
Variance in Last 3 Readings		-0.05	0.01	21.42	-1.49	0.00	-2.07
		0.00	0.00	48.08	0.48	-0.01	-2.75

Project Information:

Depth to Water

SmartTrollLow-Flow System11/13/2015ISI Low-Flow Log

Pump Information:

Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	74.80 ft
		Pump Placement from TOC	70.88 ft
Well Information:		Pumping Information:	
Well Id	PMA-MW-4D	Final Pumping Rate	300 mL/min
Well Id Well Diameter	PMA-MW-4D 2 in	· ·	300 mL/min 607 mL
		Final Pumping Rate	•
Well Diameter	2 in	Final Pumping Rate System Volume	607 mL

14.30 ft

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
				+/-3%	+/-10%	+/-10%	
	11:25:41	18.93	7.41	1812.52	2.01	0.06	17.40
	11:27:27	18.85	7.40	1828.38	2.02	0.06	2.62
Last 5 Readings	11:29:09	18.77	7.39	1823.28	1.92	0.06	-8.32
	11:30:51	18.61	7.39	1834.69	2.02	0.05	-17.61
	11:32:33	18.59	7.38	1839.95	1.88	0.05	-25.46
		-0.08	-0.01	-5.10	-0.10	0.00	-10.94
Variance in Last 3 Readings		-0.16	0.00	11.41	0.10	-0.01	-9.29
		-0.02	-0.01	5.26	-0.14	0.00	-7.85

SmartTrollLow-Flow System11/12/2015ISI Low-Flow Log

Project Information:		Pump Information:	
Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	60.37 ft
		Pump Placement from TOC	54.48 ft

Well Information:		Pumping Information:	
Well Id	PMA-MW-5M	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	527 mL
Well Total Depth	56.98 ft	Calculated Sample Rate	105 sec
Depth to Top of Screen	51.98 ft	Sample Rate	105 sec
Screen Length	5 ft	Stabilized Drawdown	0.00 ft
Denth to Water	14 73 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	14:00:04	18.37	7.31	2244.11	1.62	0.16	-31.41
	14:01:29	18.32	7.31	2257.78	1.25	0.13	-34.85
Last 5 Readings	14:04:21	18.27	7.29	2263.22	1.18	0.09	-37.81
	14:05:46	18.32	7.29	2261.73	1.44	0.07	-37.91
	14:07:13	18.32	7.28	2264.16	1.34	0.07	-38.43
		-0.05	-0.02	5.44	-0.07	-0.04	-2.96
Variance in Last 3 Readings		0.05	0.00	-1.49	0.26	-0.02	-0.10
		0.00	-0.01	2.43	-0.10	0.00	-0.52

SmartTrollLow-Flow System11/12/2015ISI Low-Flow Log

Project Information:		Pump Information:	
Operator Name	EPW	Pump Model/Type	SS Monsoon
Company Name	Golder Associates	Tubing Type	LDPE
Project Name	W.G. Krummrich	Tubing Diameter	0.19 in
Site Name	PCB	Tubing Length	104.68 ft
		Pump Placement from TOC	98.72 ft
Well Information:		Dumning Information:	

Well Information:		Pumping Information:	
Well Id	PMA-MW-6D	Final Pumping Rate	300 mL/min
Well Diameter	2 in	System Volume	774 mL
Well Total Depth	101.22 ft	Calculated Sample Rate	154 sec
Depth to Top of Screen	96.22 ft	Sample Rate	154 sec
Screen Length	5 ft	Stabilized Drawdown	0.00 ft
Depth to Water	12.15 ft		

Low-Flow Sampling Stabilization Summary

	Time	Temp [C]	рН [рН]	Cond [µS/cm]	Turb [NTU]	RDO [mg/L]	ORP [mV]
Stabilization Settings			+/-0.2	+/-0.1	+/-1	+/-0.2	+/-20
Stabilization Settings				+/-3%	+/-10%	+/-10%	
	13:12:43	18.46	7.30	1046.34	2.46	0.22	-8.58
	13:14:57	18.46	7.27	1050.40	0.94	0.18	-18.79
Last 5 Readings	13:17:11	18.48	7.25	1052.36	0.98	0.15	-29.18
	13:19:35	18.47	7.24	1056.14	0.22	0.14	-39.17
	13:21:54	18.46	7.24	1057.57	1.24	0.12	-48.31
		0.02	-0.02	1.96	0.04	-0.03	-10.39
Variance in Last 3 Readings		-0.01	-0.01	3.78	-0.76	-0.01	-9.99
		-0.01	0.00	1.43	1.02	-0.02	-9.14

APPENDIX B CHAINS-OF-CUSTODY

Test	Amer	ica.	Sav	an	nah
I COU	-	La	Jav	GI I	11011

Chain of Custody Record

Task	A		9	_
16214		ner	IC	C
Miles .		t		- 20

5102 LaRoche Avenue																					
Savannah, GA 31404											un	ixe					THE LEAD	DER IN EN	1A3HOUME	NTAL TE	STING
phone 912.354.7858 fax	Regul	atory Pro	gram: _	_ [V]	NPDE .	2 R	KCR_	Other:	FMI	IN	VO! 1						TestA	merica	Labora	atories	, inc.
Client Contact	Project Ma	anager: An	nanda Deri	nake		Site	Cont	act: Lan	พ.เสเทอ	r_		ate:	11/12/	15			COC No): 			
Golder Associates Inc.	Tel/Fax: 6	36-724-919	91			Lab	Cont	act: Mich	ele Ke	rsey	C	arrier:	FedEx					of _	cc)Cs	
820 South Main Street		Analysis T				П	T		T			ПП			TT	\Box	Sampler	64	hite		9
St Charles, MO 63301	☑ CAL	ENDAR L	' WORKIN	IG		11		- 1 1	1		1 1	1 1			1 1		For Lab	Use Or	iy:		
(636) 724-9191 Phone	Т.	AT if different	from Below §	Standard			2				1						Walk-in	Client:			
(636) 724-9323 🖈 FAX			2			z	È										Lab Sam	ıpling:			
Project Name: 2015 PCB GW Sampling-1403345			1 week 2 days			\geq	20	-11			1 1			ă ,							
Site: Solutia WG Krummrich Facility	🗖		1 day			읦	88	-	1 1		1	1 1		e 9	1	1	Job / SD	G No.:			
P O # 42447936			Sample			Filtered Sample (Y/N	Perform MS / MSD Total PCBs by 680													-	
		rai sa A	Type			S pe	POE				1 1										
A Library of	Sample Date	Sample	(C=Comp,		# of	15	g g		1 1								_				
Sample Identification		Time	G=Grab)	Matrix	Cont	<u> </u>		_	+		-	-				+	S	ample 8	specific I	Notes:	
PMA-MW-6D-1115	11/12/15		G	W	2	N	2			l	[3	CO	bler	5	
PMA - MW-5M-1115		1408			2	N	2		\perp	8 =											
PMA - MW-1M-1115		1455			2	N	2			ρ <u>1</u> 1											
PMA-MW-15-1115		1522			2	N	2	.		8988											
PMA-MW-15-1115-MS		1522			2	N	2		T	S											
YMA-MW-IS-1115-MS		1522			2	M	2			of E											
PMA-MW-2M-1115		1604			2	W	2		7	Cug											X-
PMA-MW-2M-1115-AD		1604			2	М	2		Ť	og 🚪											
PMA-MW-28-US		1624		1	2	M	2	\Box								\Box			7		
PMA - MW-2S-1115-EB		1710			2	V	2								1-1-	11					-
111111111111111111111111111111111111111		1 110				H	T					= -	\top		\vdash	\top			~		
			-			11	+		_ 1	т-	LL		\dashv	<u> </u>	11	\forall			-		
Preservation used: 1= Ice 2= ItCl; 3= H2SO4; 4=INO3; 5=	NaOH: 6= C	ther .		<u>.</u>	· · · · · · · · · · · · · · · · · · ·	Marie .	· **	S- 1320	经运			2.054	- 11			1 19	250	THE ST	+4.		144
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample.	ist any EPA	Waste Co	des for the	sample	in the		57	e Dispos	8								*		onth)		
	Unkr	IOWII				_	<u></u>	Ret⊔m to 0	HERT	نا ت	UIS	posal by	Lab		Archive fo	<u></u>	M	onths			_
Special Instructions/QC Requirements & Comments:											^	7		r.		1.1	(5)	/	1 - T	100	_
4											0.	0/	0.4	(3.6	14	· U	(1.4	10.8	
Custody Seals Intact: No	Custody S	eal No.: 8	000961	8008	7/8	200	98	Ceol	er Tèm	p. (°C)	Ober	¥ <u>√</u>		Corr'd:			Therm IC	No.:			75
Relinquished by:	Company:			Date/T	ime:	£ F	Recei	ed/ay:	1	1/	(Compa	ny:			Date/Tin	ne: 3-/S	- a	121	1
Relinguished by:	Gold:			Date/T	15 4			ed by:				=	Compa	nv.			Date/Tin			1	
Contiguistics of		· ·						,													
Relinquished by:	Company:			Date/T	ime:	F	Receiv	red in Lab	orator	y by:			Compa	ny:			Date/Tin	ne:			
															77577	220000000000000000000000000000000000000	The second second second second	2000	20000 IN 100 IN	500000000000000000000000000000000000000	0.0000000000000000000000000000000000000

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

resumilierica gavarilla	Test	America	Savanna	h
-------------------------	-------------	---------	---------	---

Chain of Custody Record

	101	An	20	rice	-
10	5317	-61 I			L
	Yangan	100 Marco	10.5		S

5102 LaRoche Avenue

Savannah, GA 31404 phone 912.354.7858 fax	Regulatory Program:	EN NPDE	RCR Other: Gailly (linite	TestAmerica Laboratories, Inc.
Client Contact	Project Manager: Amanda Derh	nake	Site Contact: Los Bindner	Date: 1113/15	COC No:
Golder Associates Inc.	Tel/Fax: 636-724-9191		Lab Contact: Michele Kersey	Carrier: FedEx	ofCOCs
820 South Main Street	Analysis Turnaround	Time			Sampler: F= (1)hitte
St. Charles, MO 63301	CALENDAR LI WORKIN	lG	1 		For Lab Use Only:
(636) 724-9191 Phone	TAT if different from Below S	Standard			Walk-in Client:
(636) 724-9323 🛕 FAX	<u>√</u> 2				Lab Sampling:
Project Name: 2015 PCB GW Sampling-1403345	2 1 week 2 days 1 day				
Site: Solutia WG Krummrich Facility	1 day		elg MS 88 88 88 88 88 88 88 88 88 88 88 88 88		Job / SDG No.:
P O # 42447936			NS / MSD (Bs by 680		
Sample Identification	Sample Sample Type (C=Comp, G=Grab)	# of Matrix Cont.	Filtered Sample (Y/N) Perform MS / MSD (Y/N) Total PCBs by 680		Sample Specific Notes:
PMA-MW-3M-IIIS	11/13/15 1020 G	W 2	N 2		
DMD - 1/11-35-11K	1 10570 1	12	W 2		
PMA - MW-35-115 PMA - MW-4D-1115			┞╏╏┋		
P1719 - 1010 - 90 - 1115	1135	2			
PMA-MW-45-115	1 1205 1	1 2			
			╏╏╏ ╌╎╶ ╏╒ ┪		
Preservation Used: 15 Ice, 2-HCI; 3-H2SO4; 4-HNO3; 5-	NaOH; 6= Officer		- E		
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please L Comments Section if the lab is to dispose of the sample.	ist any EPA Waste Codes for the	sample in the	Sarr 680-119038 Chain of Cui	e retained stody	longer than 1 month)
Non-Hazard 🔲 Flammab 🗌 Skin 📄 Poison B	☐ Unknown		Return to Client	rchive for	Months
Special Instructions/QC Requirements & Comments:		***		686	1-119038
Custody Seals Intact: No	Custody Seal No.: 43627	?	Cooler Temp. (°C): Ob:	s'd: 1, 4 Corr'd: 1, 6	Therm ID No :
Relinquished by:		Date/Time	/ Received by:	Company:	Date/Time:
Smert Ullarte	Company:	11/3/15 3	α		1
Reinguished by	Company.	Date/Time	Received by:	Сотралу:	Date/Time:
Relinquished by	Company:	Date/Time	Received in Laboratory by	Company:	Date/Time /
			millinge-	TL	Date/Jime'

APPENDIX C
QUALITY ASSURANCE REPORT

QUALITY ASSURANCE REPORT

PCB GROUNDWATER QUALITY ASSESSMENT PROGRAM SOLUTIA INC., W.G. KRUMMRICH FACILITY SAUGET, ILLINOIS

Prepared For: Solutia Inc.

575 Maryville Centre Drive St. Louis, MO 63141 USA

Submitted By: Golder Associates Inc.

820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

January 2016 140-3345

A world of capabilities delivered locally

Table of Contents

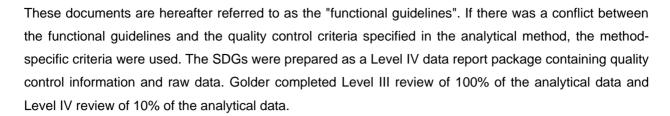
1.0	INTRODUCTION	1
2.0	POLYCHLORINATED BIPHENYLS	2
2.1	Receipt Condition and Sample Holding Times	2
2.2	Blanks	2
2.3	Surrogate Spike Recoveries	3
2.4	Laboratory Control Sample Recoveries	3
2.5	Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples	3
2.6	Analytical Duplicates	3
2.7	Results Reported From Dilutions	3
3.0	SUMMARY	3
<i>1</i> 0	PEEERENCES	5

i

1.0 INTRODUCTION

Golder Associates Inc. (Golder) completed a review of analytical data for the groundwater samples collected on November 12 and November 13, 2015 at the Solutia Inc. (Solutia) W.G. Krummrich (WGK) facility (Site) in Sauget, Illinois. Golder collected a total of fourteen (14) samples from groundwater monitoring wells as part of the 4th Quarter 2015 (4Q15) PCB Groundwater Quality Assessment Program (PCB). Ten (10) groundwater samples, one (1) equipment blank (EB), one (1) analytical duplicate (AD) and one (1) matrix spike/matrix spike duplicate (MS/MSD) pair were prepared. Groundwater monitoring locations were located at the WGK facility. The samples were submitted to the TestAmerica Laboratories, Inc. (TestAmerica) facility located in Savannah, Georgia for analysis using United States Environmental Protection Agency (USEPA) Method 680. Samples submitted to TestAmerica were analyzed for polychlorinated biphenyls (PCBs). The analytical results were placed into two (2) sample delivery groups (SDGs) as described in the table below:

1


Sample Delivery Group (SDG)	Sample Identification		
	PMA-MW-1M-1115		
	PMA-MW-1S-1115		
KPM067	PMA-MW-2M-1115		
	PMA-MW-2M-1115-AD		
	PMA-MW-2S-1115		
	PMA-MW-2S-1115-EB		
	PMA-MW-5M-1115		
	PMA-MW-6D-1115		
	PMA-MW-3M-1115		
KPM068	PMA-MW-3S-1115		
	PMA-MW-4D-1115		
	PMA-MW-4S-1115		

The samples were collected and analyzed in general accordance with the Revised PCB Groundwater Quality Assessment Program Work Plan (Work Plan) (Solutia 2009). Groundwater samples were analyzed for polychlorinated biphenyls (PCBs) using USEPA Method 680. In addition, the EB, AD and MS/MSD pair were submitted and analyzed for PCBs.

Golder completed validation of the analytical data following the general guidelines in Section 3.4 Data Review and Validation of the Work Plan. The Work Plan specifies that the most recent version of the national data validation guidelines be used for data review. The following guidelines were generally used:

 USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA-540-R-08-01, June 2008

Data that has been qualified by the data validator has been added to the laboratory report. The qualifiers indicate data that did not meet acceptance criteria and corrective actions were not successful or not performed. Laboratory data qualifiers are defined below:

■ U – The analyte was analyzed for but not was not detected

Golder data qualifiers are defined below:

■ D – The analyte was analyzed at a dilution

Section 2 summarizes the specific instances where quality control criteria in the functional guidelines were not met. As specified in the functional guidelines, if the non-adherence to quality control criteria is slight, professional judgment was used in qualification of the data. However, if the non-adherence is significant, qualification and rejection of the data may be necessary. A summary of qualified data is provided in Section 3.0.

Following data validation, the qualified data were summarized in tables, which are included in the main body of the report.

2.0 POLYCHLORINATED BIPHENYLS

Samples were collected from ten (10) groundwater monitoring locations and analyzed for PCBs. One (1) AD sample was collected from sampling location, PMA-MW-2M. One (1) EB, associated with PMA-MW-2S was also prepared and shipped for laboratory analysis. The samples were submitted to TestAmerica, placed into two (2) data packages or SDGs (KPM067 and KPM068), and were prepared and analyzed using USEPA Method 680. Samples were validated in general accordance with the functional guidelines. Results of the validation are summarized below.

2.1 Receipt Condition and Sample Holding Times

The SDG Case Narrative, chain-of-custody, login sample receipt checklist, and analysis dates were reviewed to verify analytical method holding times and proper preservation upon sampling. Samples were received by TestAmerica in good condition.

2.2 Blanks

Laboratory and field blanks, including method blanks and equipment blanks are prepared and analyzed to determine if contamination occurred as a result of laboratory or field activities.

Laboratory method blanks were performed for each laboratory system as outlined for each analytical method to evaluate whether cross contamination occurred during laboratory analysis activities. Results for the method blanks were non-detect.

One (1) EB, associated with sample PMA-MW-2S, was collected during the 4Q15 event to assess the effectiveness of the decontamination procedure. There were no detections in the EB.

2.3 Surrogate Spike Recoveries

Samples to be analyzed for PCBs were spiked with surrogate compound decachlorobiphenyl-13C12 prior to analysis, to evaluate overall laboratory performance. No deficiencies were noted, therefore no qualification was required.

2.4 Laboratory Control Sample Recoveries

A laboratory control sample (LCS) is analyzed on each laboratory system to evaluate the analytical method accuracy and laboratory performance. LCS recoveries were within acceptance criteria.

2.5 Matrix Spike/Matrix Spike Duplicate (MS/MSD) Samples

MS/MSD samples are analyzed to determine long term precision and accuracy of the analytical method on various matrices. One (1) MS/MSD pair is sampled for every twenty (20) field samples. One (1) MS/MSD pair was collected during the 4Q15 event associated with sample PMA-MW-1S. MS/MSD accuracy and precision data met criteria; therefore qualification was not required.

2.6 Analytical Duplicates

One (1) AD is collected for every ten (10) field samples to determine the overall precision of field and laboratory methods. One (1) AD was collected during the 4Q15 event associated with sample PMA-MW-2M. The relative percent difference (RPD) between the sample, PMA-MW-2M, and the AD, PMA-MW-2M-AD, did not exceeded 25%; therefore, data qualification was not required.

2.7 Results Reported From Dilutions

PCB samples, PMA-MW-2M, PMA-MW-2M-AD, and PMA-MW-4S required dilutions due to high levels of target analytes or initial appearance. Reporting limits were adjusted to reflect the dilution. Result qualifications are shown in Section 3.0.

3.0 SUMMARY

Golder validated the data collected during the 4Q15 sampling event from the Solutia Inc. WGK facility in general accordance with the Work Plan and USEPA functional guidelines. Although some data required qualifications due to quality control criteria that were not achieved, the data were deemed usable. Where a positive result was qualified as estimated, the analyte should be considered present. Similarly, a result

that was qualified as an estimated reporting limit should be considered not present for the purposes of this program, although the limit itself may not be precise. The completeness for the entire data set was 100%.

Qualification Summary Table

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Heptachlorobiphenyl, Hexachlorobiphenyl, Octachlorobiphenyl, Monochlorobiphenyl, Dichlorobiphenyl, Pentachlorobiphenyl, Tetrachlorobiphenyl, and Trichlorobiphenyl	D	PMA-MW-2M, PMA-MW-2M- AD and PMA-MW-4S

4.0 REFERENCES

Solutia Inc, 2009. Revised PCB Groundwater Quality Assessment Program Work Plan, W.G. Krummrich Facility, Sauget, IL, Prepared by URS Corporation, May 2009.

USEPA, 2008. Contract Laboratory Program national Functional Guidelines for Superfund Organic Methods Data Review.

APPENDIX D
GROUNDWATER ANALYTICAL RESULTS
(INCLUDING DATA VALIDATION REPORTS)

January 2016 1 140-3345

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 4Q15 PCB Groundwater Quality Assessment

Sample Names: PMA-MW-6D-1115, PMA-MW-5M-1115, PMA-MW-1M-1115, PMA-MW-1S-1115, PMA-MW-2M-1115, PMA-MW-2M-1115, PMA-MW-2M-1115, PMA-MW-1M-1115, PMA-MW-1M-1115,

Company Name: Golder Associates
Project Name: WGK-4Q15 PCB

Reviewer: A. Derhake Laboratory: TestAmerica

SDG#: KPM067 Matrix: Water

EPA ARCHIVE DOCUMENT

Analytical Method: PCB (680)

1115-AD, PMA-MW-2S-1115, and PMA-MW-2S-1115-EB

Project Manager: A. Derhake
Project Number: 140-3345
Sample Date: November 2015

Field	Information	YES	NO	NA
a)	Sampling dates noted?	\boxtimes		
b)	Does the laboratory narrative indicate deficiencies?	\boxtimes		
Co	mments:			
	s: Samples PMA-MW-2M-1115 and PMA-MW-2M-1115-AD required a dilution prior to analysis, rep	orting	imits	were adjusted
acco	<u>rdingly.</u>			
Chai	n-of-Custody (COC)	YES	NO	NA
a)	Was the COC signed by both field and laboratory personnel?	\boxtimes		
b)	Were samples received in good condition?			
Co	emments: Samples were received at 0.4°C, 0.8°C and 4.0°C, some outside the 4°C +/- 2°C criteria.	<u>.</u>		
Gen	eral	YES	NO	NA
a)	Were hold times met for sample analysis?	\boxtimes		
b)	Were the correct preservatives used?	\boxtimes		
c)	Was the correct method used?	\boxtimes		
d)	Any sample dilutions noted?			
Co	mments: Detections in diluted analysis were qualified.			
Calib	prations	YES	NO	NA
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standards?	? \		
C	omments: None			
Blar	ıks	YES	NO	NA
a)	Were blanks (trip, equipment, method) performed at required frequency?	\boxtimes		
b)	Were analytes detected in any blanks?		\boxtimes	
Co	mments: Equipment blank PMA-MW-2S-1115-EB was submitted with SDG KPM067.			

	Jar	nuary 2016		2			140-334	5
Matri	x Spike/Matrix Spike Duplicate (MS	/MSD)			YES	NO	NA	
a)	Was MS/MSD accuracy criteria met	?			\boxtimes			
b)	Was MS/MSD precision criteria met	?			\boxtimes			
Со	mments: None							
Labo	ratory Control Sample (LCS)				YES	NO	NA	
a)	LCS analyzed at the appropriate free	quency and met ap	propriate standar	ds?	\boxtimes			
Co	mments: None							
Surro	ogate (System Monitoring) Compou	nds			YES	NO	NA	
a)	Surrogate compounds analyzed at the	ne appropriate freq	uency and met ap	propriate standards?	\boxtimes			
Со	mments: None							
Dupli	icates				YES	NO	NA	
a)	Were field duplicates collected?				\boxtimes			
b)	Was field duplicate precision criteria	met?			\boxtimes			
Со	mments: Duplicate sample PMA-MW	/-2M-1115-AD was	submitted with SI	OG KPM067.				

Additional Comments: None

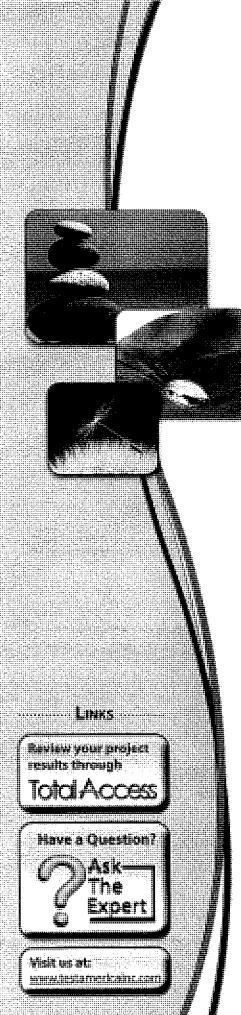
Qualifications:

Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Monochlorobiphenyl	D	PMA-MW-2M and PMA-MW-2M-AD

SDG KPM067

Sample Results from:

PMA-MW-1S


PMA-MW-1M

PMA-MW-2S

PMA-MW-2M

PMA-MW-5M

PMA-MW-6D

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-118989-1 TestAmerica Sample Delivery Group: KPM067

Client Project/Site: 4Q15 PCB GW Sampling - 1403345

For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michele RKusey

Authorized for release by: 12/4/2015 12:09:23 PM

Michele Kersey, Project Manager I (912)354-7858 michele.kersey@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	15
QC Association	17
Chronicle	18
Chain of Custody	20
Receipt Checklists	21
Certification Summary	22

IS EPA ARCHIVE DOCUMEN

Case Narrative

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Job ID: 680-118989-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 4Q15 PCB GW Sampling - 1403345

Report Number: 680-118989-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

The samples were received on 11/13/2015 9:34 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 0.4° C, 0.8° C and 4.0° C.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples PMA-MW-6D-1115 (680-118989-1), PMA-MW-5M-1115 (680-118989-2), PMA-MW-1M-1115 (680-118989-3), PMA-MW-1S-1115 (680-118989-4), PMA-MW-2M-1115 (680-118989-5), PMA-MW-2M-1115-AD (680-118989-6), PMA-MW-2S-1115 (680-118989-7) and PMA-MW-2S-1115-EB (680-118989-8) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA Method 680. The samples were prepared on 11/19/2015 and analyzed on 12/02/2015.

Samples PMA-MW-2M-1115 (680-118989-5)[5X] and PMA-MW-2M-1115-AD (680-118989-6)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

AND DISONS

Sample Summary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Lab Sample ID	Client Sample ID	Matrix	Collected Received
680-118989-1	PMA-MW-6D-1115	Water	11/12/15 13:22 11/13/15 09:3
680-118989-2	PMA-MW-5M-1115	Water	11/12/15 14:08 11/13/15 09:3
680-118989-3	PMA-MW-1M-1115	Water	11/12/15 14:55 11/13/15 09:3
680-118989-4	PMA-MW-1S-1115	Water	11/12/15 15:22 11/13/15 09:3
680-118989-5	PMA-MW-2M-1115	Water	11/12/15 16:04 11/13/15 09:3
680-118989-6	PMA-MW-2M-1115-AD	Water	11/12/15 16:04 11/13/15 09:3
680-118989-7	PMA-MW-2S-1115	Water	11/12/15 16:24 11/13/15 09:3
680-118989-8	PMA-MW-2S-1115-EB	Water	11/12/15 17:10 11/13/15 09:3

TestAmerica Job ID: 680-118989-1

SDG: KPM067

TAL SAV

Method **Method Description** Protocol Laboratory 680 Polychlorinated Biphenyls (PCBs) (GC/MS)

Protocol References:

EPA ARCHIVE DOCUMENT

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

ANN 12/30/15 TestAmerica Savannah

Definitions/Glossary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

6

Qualifiers

GC/MS Semi VOA

Qualifier

Qualifier Description

U

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation	These commonly	used abbreviations ma	y or may not be	present in this report.
--------------	----------------	-----------------------	-----------------	-------------------------

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains no Free Liquid

DER Duplicate error ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision level concentration
MDA Minimum detectable activity
EDL Estimated Detection Limit

MDC Minimum detectable concentration

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control
RER Relative error ratio

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

MWD 12-13015
TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-6D-1115

Date Collected: 11/12/15 13:22 Date Received: 11/13/15 09:34 Lab Sample ID: 680-118989-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	Ü	0.30		ug/L		11/19/15 15:51	12/02/15 15:32	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 15:32	1
Nonachlorobiphenyl	0.51	U	0.51		ug/L		11/19/15 15:51	12/02/15 15:32	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 15:32	1
Monochlorobiphenyl	0.19		0.10		ug/L		11/19/15 15:51	12/02/15 15:32	1
DCB Decachlorobiphenyl	0.51	U	0.51		ug/L		11/19/15 15:51	12/02/15 15:32	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 15:32	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 15:32	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 15:32	1
Trichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 15:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	69		25-113				11/19/15 15:51	12/02/15 15:32	1

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-5M-1115

Lab Sample ID: 680-118989-2

Date Collected: 11/12/15 14:08 Date Received: 11/13/15 09:34 Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	Ü	0,30		ug/L		11/19/15 15:51	12/02/15 16:01	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:01	1
Nonachlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/02/15 16:01	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 16:01	1
Monochlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/02/15 16:01	1
DCB Decachlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/02/15 16:01	1
Dichlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/02/15 16:01	1
Pentachlorobiphenyl	0,20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:01	1
Tetrachlorobiphenyl	0.20	U	0,20		ug/L		11/19/15 15:51	12/02/15 16:01	1
Trichlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/02/15 16:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	60		25 - 113				11/19/15 15:51	12/02/15 16:01	1

HWD 1213015 TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-1M-1115

Date Collected: 11/12/15 14:55 Date Received: 11/13/15 09:34 Lab Sample ID: 680-118989-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.31	U	0.31		ug/L		11/19/15 15:51	12/02/15 16:29	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:29	1
Nonachlorobiphenyl	0.51	U	0.51		ug/L		11/19/15 15:51	12/02/15 16:29	1
Octachlorobiphenyl	0.31	U	0.31		ug/L		11/19/15 15:51	12/02/15 16:29	1
Monochlorobiphenyl	0.61		0.10		ug/L		11/19/15 15:51	12/02/15 16:29	1
DCB Decachlorobiphenyl	0.51	U	0.51		ug/L		11/19/15 15:51	12/02/15 16:29	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 16:29	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:29	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:29	1
Trichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 16:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	60		25-113				11/19/15 15:51	12/02/15 16:29	1

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-1S-1115

Lab Sample ID: 680-118989-4

Date Collected: 11/12/15 15:22 Date Received: 11/13/15 09:34

Matrix: Water

Analyte	Result	Qualifler	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 16:58	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:58	1
Nonachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 16:58	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 16:58	1
Monochlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/02/15 16:58	1
DCB Decachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 16:58	1
Dichlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/02/15 16:58	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:58	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 16:58	1
Trichlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/02/15 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	64		25-113				11/19/15 15:51	12/02/15 16:58	

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-2M-1115 Lab Sample ID: 680-118989-5

Date Collected: 11/12/15 16:04 Lab Sample 1D. 600-116969-5

Date Received: 11/13/15 09:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Heptachlorobiphenyl	1.5	U	1.5		ug/L		11/19/15 15:51	12/02/15 17:26	
Hexachlorobiphenyl	0.98	U	0.98		ug/L		11/19/15 15:51	12/02/15 17:26	
Nonachlorobiphenyl	2.4	U	2.4		ug/L		11/19/15 15:51	12/02/15 17:26	
Octachlorobiphenyl	1.5	Ų	1.5		ug/L		11/19/15 15:51	12/02/15 17:26	
Monochlorobiphenyl	9.5	1D	0.49		ug/L		11/19/15 15:51	12/02/15 17:26	
DCB Decachlorobiphenyl	2.4	U	2.4		ug/L		11/19/15 15:51	12/02/15 17:26	
Dichlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/02/15 17:26	
Pentachlorobiphenyl	0.98	U	0.98		ug/L		11/19/15 15:51	12/02/15 17:26	
Tetrachlorobipheny!	0.98	U	0.98		ug/L		11/19/15 15:51	12/02/15 17:26	
Trichlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/02/15 17:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Decachlorobiphenyl-13C12	112		25-113				11/19/15 15:51	12/02/15 17:26	

MWO 1213W15 TestAmerica Savannah

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-2M-1115-AD

Lab Sample ID: 680-118989-6

Matrix: Water

Date Collected: 11/12/15 16:04 Date Received: 11/13/15 09:34

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	1.5	Ū	1.5		ug/L		11/19/15 15:51	12/02/15 17:54	- 5
Hexachlorobiphenyl	1.0	U	1.0		ug/L		11/19/15 15:51	12/02/15 17:54	5
Nonachlorobiphenyl	2.6	U	2.6		ug/L		11/19/15 15:51	12/02/15 17:54	5
Octachlorobiphenyl	1.5	U	1.5		ug/L		11/19/15 15:51	12/02/15 17:54	5
Monochlorobiphenyl	10	D	0.52		ug/L		11/19/15 15:51	12/02/15 17:54	5
DCB Decachlorobiphenyl	2.6	U	2.6		ug/L		11/19/15 15:51	12/02/15 17:54	5
Dichlorobiphenyl	0.52	U	0.52		ug/L		11/19/15 15:51	12/02/15 17:54	5
Pentachlorobiphenyl	1.0	U	1.0		ug/L		11/19/15 15:51	12/02/15 17:54	5
Tetrachlorobiphenyl	1.0	U	1.0		ug/L		11/19/15 15:51	12/02/15 17:54	5
Trichlorobiphenyl	0.52	U	0.52		ug/L		11/19/15 15:51	12/02/15 17:54	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	109		25 - 113				11/19/15 15:51	12/02/15 17:54	- 5

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-2S-1115

Date Collected: 11/12/15 16:24 Date Received: 11/13/15 09:34 Lab Sample ID: 680-118989-7

Matrix: Water

Method: 680 - Polychlorina Analyte		(PCBs) (G [.] Qualifier	C/MS) RL	MDL	Unit	D	Droporod	Analusad	Dil Fac
				MIDL			Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 18:23	1
Hexachlorobiphenyl	0.20	υ	0.20		ug/L		11/19/15 15:51	12/02/15 18:23	1
Nonachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 18:23	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 18:23	1
Monochlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 18:23	1
DCB Decachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 18:23	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 18:23	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 18:23	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 18:23	1
Trichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	82	-	25-113				11/19/15 15:51	12/02/15 18:23	1

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-2S-1115-EB

Date Collected: 11/12/15 17:10 Date Received: 11/13/15 09:34 Lab Sample ID: 680-118989-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.31	Ű	0.31		ug/L		11/19/15 15:51	12/02/15 18:51	1
Hexachlorobiphenyl	0.20	Ų	0.20		ug/L		11/19/15 15:51	12/02/15 18:51	1
Nonachlorobiphenyl	0.51	U	0.51		ug/L		11/19/15 15:51	12/02/15 18:51	1
Octachlorobiphenyl	0.31	U	0.31		ug/L		11/19/15 15:51	12/02/15 18:51	1
Monochlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 18:51	1
DCB Decachlorobiphenyl	0.51	U	0.51		ug/L		11/19/15 15:51	12/02/15 18:51	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 18:51	1
Pentachlorobiphenyl	0.20	Ų	0.20		ug/L		11/19/15 15:51	12/02/15 18:51	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 18:51	1
Trichlorobiphenyl	0.10	U	0.10	•	ug/L		11/19/15 15:51	12/02/15 18:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	73		25 - 113				11/19/15 15:51	12/02/15 18:51	1

HWD 12/30/15 TestAmerica Savannah

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Method: 680 - Polychlorinated Biphenyls (PCBs) (GC/MS)

Lab Sample ID: MB 680-411127/13-A Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA

Analysis Batch: 412678 Prep Batch: 411127

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 13:38	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 13:38	1
Nonachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 13:38	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 13:38	1
Monochlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 13:38	1
DCB Decachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 13:38	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 13:38	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 13:38	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 13:38	1
Trichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 13:38	1

 MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fed

 Decachlorobiphenyl-13C12
 76
 25-113
 11/19/15 15:51
 12/02/15 13:38
 1

Lab Sample ID: LCS 680-411127/14-A

Matrix: Water

Analysis Batch: 412678

Client Sample ID: Lab Control Sample
Prep Type: Total/NA

Prep Batch: 411127

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Heptachlorobiphenyl	6.00	4.76		ug/L		79	62 - 130	
Hexachlorobiphenyl	4.00	3.15		ug/L		79	62 - 130	
Nonachlorobiphenyl	10.0	10.9		ug/L		109	70 ₋ 195	
Octachlorobiphenyl	6.00	4.72		ug/L		79	64 - 130	
Monochlorobiphenyl	2.00	1.19		ug/L		60	42 - 130	
DCB Decachlorobiphenyl	10.0	7.43		ug/L		74	59 - 130	
Dichlorobiphenyl	2.00	1.34		ug/L		67	49 - 130	
Pentachlorobiphenyl	4.00	3.09		ug/L		77	63 - 130	
Tetrachlorobiphenyl	4.00	2.97		ug/L		74	54 - 130	
Trichlorobiphenyl	2.00	1.47		ug/L		74	51 ₋ 130	

 Surrogate
 %Recovery
 Qualifier
 Limits

 Decachlorobiphenyl-13C12
 77
 25-113

Lab Sample ID: 680-118989-4 MS

Matrix: Water

Analysis Batch: 412678

Client Sample ID: PMA-MW-1S-1115

Prep Type: Total/NA

Prep Batch: 411127

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
0.30	Ū	5.96	5.12		ug/L		86	62 - 130	
0.20	U	3.98	3.38		ug/L		85	62 - 130	
0.50	U	9.94	11.5		ug/L		115	70 - 195	
0.30	U	5.96	4.92		ug/L		82	64 - 130	
0.099	υ	1.99	1.34		ug/L		68	42 - 130	
0.50	υ	9.94	8.04		ug/L		81	59-130	
0.099	υ	1.99	1.47		ug/L		74	49 - 130	
0.20	υ	3.98	4.84		ug/L		122	63 - 130	
0.20	υ	3.98	2.99		ug/L		75	54 - 130	
	Result 0.30 0.20 0.50 0.30 0.099 0.50 0.099 0.20	Result Qualifier	Result Qualifier Added 0.30 U 5.96 0.20 U 3.98 0.50 U 9.94 0.30 U 5.96 0.099 U 1.99 0.50 U 9.94 0.099 U 1.99 0.20 U 3.98	Result Qualifier Added Result 0.30 U 5.96 5.12 0.20 U 3.98 3.38 0.50 U 9.94 11.5 0.30 U 5.96 4.92 0.099 U 1.99 1.34 0.50 U 9.94 8.04 0.099 U 1.99 1.47 0.20 U 3.98 4.84	Result Qualifier Added Result Qualifier 0.30 U 5.96 5.12 0.20 U 3.98 3.38 0.50 U 9.94 11.5 0.30 U 5.96 4.92 0.099 U 1.99 1.34 0.50 U 9.94 8.04 0.099 U 1.99 1.47 0.20 U 3.98 4.84	Result Qualifier Added Result Qualifier Unit 0.30 U 5.96 5.12 ug/L 0.20 U 3.98 3.38 ug/L 0.50 U 9.94 11.5 ug/L 0.30 U 5.96 4.92 ug/L 0.099 U 1.99 1.34 ug/L 0.50 U 9.94 8.04 ug/L 0.099 U 1.99 1.47 ug/L 0.20 U 3.98 4.84 ug/L	Result Qualifier Added Result Qualifier Unit D 0.30 U 5.96 5.12 ug/L ug/L	Result Qualifier Added Result Qualifier Unit D %Rec 0.30 U 5.96 5.12 ug/L 86 0.20 U 3.98 3.38 ug/L 85 0.50 U 9.94 11.5 ug/L 115 0.30 U 5.96 4.92 ug/L 82 0.099 U 1.99 1.34 ug/L 68 0.50 U 9.94 8.04 ug/L 81 0.099 U 1.99 1.47 ug/L 74 0.20 U 3.98 4.84 ug/L 122	Result Qualifier Added Result Qualifier Unit D %Rec Limits 0.30 U 5.96 5.12 ug/L 86 62-130 0.20 U 3.98 3.38 ug/L 85 62-130 0.50 U 9.94 11.5 ug/L 115 70-195 0.30 U 5.96 4.92 ug/L 82 64-130 0.099 U 1.99 1.34 ug/L 68 42-130 0.50 U 9.94 8.04 ug/L 81 59-130 0.099 U 1.99 1.47 ug/L 74 49-130 0.099 U 3.98 4.84 ug/L 72 63-130

PWN 120115 TestAmerica Savannah

Page 15 of 22

QC Sample Results

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Method: 680 - Polychlorinated Biphenyls (PCBs) (GC/MS) (Continued)

Lab Sample ID: 680-118989-4 MS Client Sample ID: PMA-MW-1S-1115 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 412678 Prep Batch: 411127 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Trichlorobiphenyl 0.099 Ū 1.99 51 - 130 1.44 ug/L 73 MS MS Surrogate %Recovery Qualifier Limits 25-113 Decachlorobiphenyl-13C12 82

Lab Sample ID: 680-118989-4 MSD

Matrix: Water

Analysis Batch: 412678

Client Sample ID: PMA-MW-1S-1115

Prep Type: Total/NA Prep Batch: 411127

	Analysis Daten. 412010	Cample	Sample	Spike	Men	MSD				%Rec.	11011. 4	RPD
- Contract		•	•									
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Heptachlorobiphenyl	0.30	U	6.15	5.29		ug/L		86	62 - 130	3	40
	Hexachlorobiphenyl	0.20	U	4.10	3.55		ug/L		87	62 - 130	5	40
	Nonachlorobiphenyl	0.50	U	10.3	11.9		ug/L		116	70 - 195	4	40
	Octachlorobiphenyl	0.30	U	6.15	5.02		ug/L		82	64 - 130	2	40
	Monochlorobiphenyl	0.099	U	2.05	1.12		ug/L		55	42 - 130	18	40
	DCB Decachlorobiphenyl	0.50	U	10.3	7.89		ug/L		77	59 - 130	2	40
	Dichlorobiphenyl	0.099	U	2.05	1.39		ug/L		68	49 - 130	6	40
	Pentachlorobiphenyl	0.20	U	4.10	5.01		ug/L		122	63 - 130	4	40
	Tetrachiorobiphenyl	0.20	U	4.10	2.85		ug/L		70	54 - 130	5	40
	Trichlorobiphenyl	0.099	U	2.05	1.36	•	ug/Ĺ		66	51 - 130	6	40

Surrogate%RecoveryQualifierLimitsDecachlorobiphenyl-13C127725-113

MSD MSD

AWO 12/20/15 TestAmerica Savannah

EPA ARCHIVE DOCUMENT

QC Association Summary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

GC/MS Semi VOA

Prep Batch: 411127

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-118989-1	PMA-MW-6D-1115	Total/NA	Water	680	
680-118989-2	PMA-MW-5M-1115	Total/NA	Water	680	
680-118989-3	PMA-MW-1M-1115	Total/NA	Water	680	
680-118989-4	PMA-MW-1S-1115	Total/NA	Water	680	
680-118989-4 MS	PMA-MW-1S-1115	Total/NA	Water	680	
680-118989-4 MSD	PMA-MW-1S-1115	Total/NA	Water	680	
680-118989-5	PMA-MW-2M-1115	Total/NA	Water	680	
680-118989-6	PMA-MW-2M-1115-AD	Total/NA	Water	680	
680-118989-7	PMA-MW-2S-1115	Total/NA	Water	680	
680-118989-8	PMA-MW-2S-1115-EB	Total/NA	Water	680	
LCS 680-411127/14-A	Lab Control Sample	Total/NA	Water	680	
MB 680-411127/13-A	Method Blank	Total/NA	Water	680	

Analysis Batch: 412678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-118989-1	PMA-MW-6D-1115	Total/NA	Water	680	411127
680-118989-2	PMA-MW-5M-1115	Total/NA	Water	680	411127
680-118989-3	PMA-MW-1M-1115	Total/NA	Water	680	411127
680-118989-4	PMA-MW-1S-1115	Total/NA	Water	680	411127
680-118989-4 MS	PMA-MW-1S-1115	Total/NA	Water	680	411127
680-118989-4 MSD	PMA-MW-1S-1115	Total/NA	Water	680	411127
680-118989-5	PMA-MW-2M-1115	Total/NA	Water	680	411127
680-118989-6	PMA-MW-2M-1115-AD	Total/NA	Water	680	411127
680-118989-7	PMA-MW-2S-1115	Total/NA	Water	680	411127
680-118989-8	PMA-MW-2S-1115-EB	Total/NA	Water	680	411127
LCS 680-411127/14-A	Lab Control Sample	Total/NA	Water	680	411127
MB 680-411127/13-A	Method Blank	Total/NA	Water	680	411127

Lab Chronicle

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-6D-1115

Date Collected: 11/12/15 13:22 Date Received: 11/13/15 09:34

Lab Sample ID: 680-118989-1

Matrix: Water

	-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Ргер Туре	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	680			986.5 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
-	Total/NA	Analysis	680		1	986.5 mL	1.0 mL	412678	12/02/15 15:32	NED	TAL SAV

Client Sample ID: PMA-MW-5M-1115

Date Collected: 11/12/15 14:08

Date Received: 11/13/15 09:34

Lab Sample ID: 680-118989-2

Matrix: Water

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Ргер Туре	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
1	Total/NA	Prep	680			1014.6 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Ì	Total/NA	Analysis	680		1	1014.6 mL	1.0 mL	412678	12/02/15 16:01	NED	TAL SAV

Client Sample ID: PMA-MW-1M-1115

Date Collected: 11/12/15 14:55

Date Received: 11/13/15 09:34

•	Matrix: Water
	· · ·

Lab Sample ID: 680-118989-3

-		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	680		,	982.2 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
	Total/NA	Analysis	680		1	982.2 mL	1.0 mL	412678	12/02/15 16:29	NED	TAL SAV

Client Sample ID: PMA-MW-1S-1115

Date Collected: 11/12/15 15:22

Date Received: 11/13/15 09:34

Lab	Samp	le l	ID:	680-	11	18989-4

Matrix: Water

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680		Account to any or the same	1006.6 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		1	1006.6 mL	1.0 mL	412678	12/02/15 16:58	NED	TAL SAV

Client Sample ID: PMA-MW-2M-1115

Date Collected: 11/12/15 16:04

Date Received: 11/13/15 09:34

Lab Sample ID: 680-118989-5	Lab	Sample	ID:	680-118989-5
-----------------------------	-----	--------	-----	--------------

Lab Sample ID: 680-118989-6

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680			1022.3 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		5	1022.3 mL	1.0 mL	412678	12/02/15 17:26	NED	TAL SAV

Client Sample ID: PMA-MW-2M-1115-AD

Date Collected: 11/12/15 16:04

Date Received: 11/13/15 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680			1022.3 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		5	1022.3 mL	1.0 mL	412678	12/02/15 17:26	NED	TAL SAV

Batch Dil Initial Final Batch Prepared Batch Prep Type Type Method Run Factor **Amount** Amount Number or Analyzed Analyst Lab 680 411127 11/19/15 15:51 RBS TAL SAV Total/NA Ргер 968.2 mL 1.0 mL 412678 12/02/15 17:54 NED TAL SAV Total/NA 680 968.2 mL 1.0 mL Analysis

TestAmerica Savannah

Lab Chronicle

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Client Sample ID: PMA-MW-2S-1115

Date Collected: 11/12/15 16:24 Date Received: 11/13/15 09:34 Lab Sample ID: 680-118989-7

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680			999.7 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		1	999.7 mL	1.0 mL	412678	12/02/15 18:23	NED	TAL SAV

Client Sample ID: PMA-MW-2S-1115-EB

Date Collected: 11/12/15 17:10

Date Received: 11/13/15 09:34

Lab Sample ID: 680-118989-8

Matrix: Water

	Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
1	Total/NA	Prep	680			982.8 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Į.	Total/NA	Analysis	680		· 1	982,8 mL	1.0 mL	412678	12/02/15 18:51	NED	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

AWD DJ3015
TestAmerica Savannah

TestAmerica Savannah
5102 LaRoche Avenue

Chain of Custody Record

T1 A		<u> </u>
TestA	mer	1CO

Page

20

9,

Relinquished by:

Regulatory Program: _ IV NPDE RCR Other: 6mily White THE LEADER IN ENVIRONMENTAL TESTING Savannah, GA 31404 phone 912,354,7858 fax TestAmerica Laboratories, Inc. Project Manager: Amanda Derhake COC No. Client Contact Date: 11/12/15 Tel/Fax: 636-724-9191 Golder Associates Inc. Lab Contact: Michele Kersev Carrier: FedEx of__ [COCs 820 South Main Street Analysis Turnaround Time Sampler. & Libite CALENDAR WORKING St Charles, MO 63301 For Lab Use Only: (636) 724-9191 Phone TAT if different from Below Standard Walk-in Client (636) 724-9323 🛶 FAX Lab Sampling: Project Name: 2015 PCB GW Sampling-1403345 1 week 2 days Site: Solutia WG Krummrich Facility Job / SDG No.: 1 day P O # 42447936 Sample Туре Sample Sample (C=Comp. Sample Identification Date Time G=Grab) Cont. Matrix Sample Specific Notes: 6 2 coolers 1522 1522 1522 1604 1607 1624 2 2 Preservation USE 1= ICE 25-HCL; 2= H2SO4) 4-000 Et 25-NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. ☑ Non-Hazard ☐ Flammab ☐ Skin Poison B Return to Client Unknown Disposal by Lab Special Instructions/QC Requirements & Comments: Custody Seal No.: 8 00 (6/800 89 7/8000 98 / 98 oler Temp. (°C): 605-0-1 Custody Seals Intact 1/12/15 Receiped by later Times Therm ID No. Company: Company Golder Relinquished by: () Company: Received by Company

Date/Time:

Company:

Received in Laboratory by:

Form No. CA-C-WI-002, Rev. 4.3, dated 12/05/2013

Date/Time:

Company:

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-118989-1

SDG Number: KPM067

List Source: TestAmerica Savannah

Login Number: 118989 List Number: 1

Creator: White, Menica R

ordered transport to the control of		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact:	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Phup latadis

EPA ARCHIVE DOCUMENT

Certification Summary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-118989-1

SDG: KPM067

Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Illinois	NELAP	5	200022	11-30-15 *

MWN 2 Pod 15
TestAmerica Savannah

Page 22 of 22

^{*} Certification renewal pending - certification considered valid.

Project Manager: <u>A. Derhake</u> Project Number: <u>140-3345</u>

Sample Date: November 2015

Level IV Data Validation Summary Solutia Inc., W.G. Krummrich, Sauget, Illinois 4Q15 PCB Groundwater Quality Assessment

Company Name: Golder Associates
Project Name: WGK-4Q15 PCB

Reviewer: A. Derhake Laboratory: TestAmerica

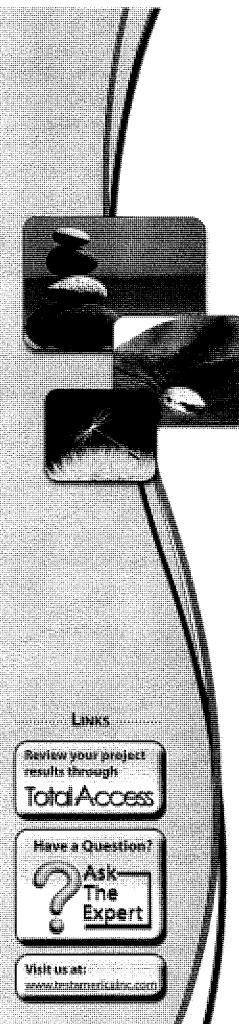
SDG#: KPM068 Matrix: Water

Anal	ytical Method: PCB (680)			
Sam	ple Names: PMA-MW-3M-1115, PMA-MW-3S-1115, PMA-MW-4D-1115, and PMA-MW-4S-1115			
Field Information				NA
a)	Sampling dates noted?	\boxtimes		
b)	Does the laboratory narrative indicate deficiencies?	\boxtimes		
Co	omments:			
<u>PCB</u>	s: Sample PMA-MW-4S-1115 required a dilution prior to analysis, reporting limits were adjusted acc	ording	<u>ıly.</u>	
Chai	n-of-Custody (COC)	YES	NO	NA
a)	Was the COC signed by both field and laboratory personnel?	\boxtimes		
b)	Were samples received in good condition?	\boxtimes		
Co	omments: Samples were received at 1.8°C, outside the 4°C +/- 2°C criteria.			
General		YES	NO	NA
a)	Were hold times met for sample analysis?	\boxtimes		
b)	Were the correct preservatives used?	\boxtimes		
c)	Was the correct method used?	\boxtimes		
d)	Any sample dilutions noted?	\boxtimes		
Co	mments: Detections in diluted analysis were qualified.			
Calik	prations	YES	NO	NA
a)	Initial calibration analyzed at the appropriate frequency and met the appropriate standards?	\boxtimes		
b)	Continuing calibrations analyzed at the appropriate frequency and met the appropriate standards?	? 🛛		
С	comments: None			
Blar	Blanks			
a)	Were blanks (trip, equipment, method) performed at required frequency?	\boxtimes		
b)	Were analytes detected in any blanks?			
Co	omments: None			

	January 2016 2			140-334	15
Matri	x Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	
a)	Was MS/MSD accuracy criteria met?			\boxtimes	
b)	Was MS/MSD precision criteria met?			\boxtimes	
Со	mments: None				
Labo	ratory Control Sample (LCS)	YES	NO	NA	
a)	LCS analyzed at the appropriate frequency and met appropriate standards?	\boxtimes			
Co	mments: None				
Surro	ogate (System Monitoring) Compounds	YES	NO	NA	
a)	Surrogate compounds analyzed at the appropriate frequency and met appropriate standards?	\boxtimes			
Co	mments: None				
Dupli	icates	YES	NO	NA	
a)	Were field duplicates collected?			\boxtimes	
b)	Was field duplicate precision criteria met?			\boxtimes	
Со	mments: None				

Qualifications:

Additional Comments: None


Quality Control Issue	Compound(s)	Qualifier	Samples Affected
Compounds analyzed at a dilution	Heptachlorobiphenyl, Hexachlorobiphenyl, Octachlorobiphenyl, Monochlorobiphenyl, Dichlorobiphenyl, Pentachlorobiphenyl, Tetrachlorobiphenyl, and Trichlorobiphenyl	D	PMA-MW-4S

SDG KPM068

Sample Results from:

PMA-MW-3S PMA-MW-3M PMA-MW-4S PMW-MW-4D

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Savannah 5102 LaRoche Avenue Savannah, GA 31404 Tel: (912)354-7858

TestAmerica Job ID: 680-119038-1 TestAmerica Sample Delivery Group: KPM068 Client Project/Site: 4Q15 PCB GW Sampling - 1403345

For: Solutia Inc. 575 Maryville Centre Dr. Saint Louis, Missouri 63141

Attn: Mr. Jerry Rinaldi

Michael KKISEY

Authorized for release by: 12/4/2015 12:07:31 PM

Michele Kersey, Project Manager I (912)354-7858 michele.kersey@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

ANDE PENA

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	4
Method Summary	5
Definitions	6
Client Sample Results	7
QC Sample Results	11
QC Association	12
Chronicle	13
Chain of Custody	14
Receipt Checklists	15
Certification Summary	16

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Job ID: 680-119038-1

Laboratory: TestAmerica Savannah

Narrative

CASE NARRATIVE

Client: Solutia Inc.

Project: 4Q15 PCB GW Sampling - 1403345

Report Number: 680-119038-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In the event of interference or analytes present at high concentrations, samples may be diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

RECEIPT

EPA ARCHIVE

The samples were received on 11/14/2015 10:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.8° C.

POLYCHLORINATED BIPHENYLS (PCBS)

Samples PMA-MW-3M-1115 (680-119038-1), PMA-MW-3S-1115 (680-119038-2), PMA-MW-4D-1115 (680-119038-3) and PMA-MW-4S-1115 (680-119038-4) were analyzed for polychlorinated biphenyls (PCBs) in accordance with EPA Method 680. The samples were prepared on 11/19/2015 and analyzed on 12/02/2015 and 12/03/2015.

Sample PMA-MW-4S-1115 (680-119038-4)[5X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

FOUR 13/01/15
TestAmerica Savannal

Page 3 of 16

Sample Summary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

			
Lab Sample ID	Client Sample ID	Matrix	Collected Received
680-119038-1	PMA-MW-3M-1115	Water	11/13/15 10:20 11/14/15 10:20
680-119038-2	PMA-MW-3S-1115	Water	11/13/15 10:50 11/14/15 10:20
680-119038-3	PMA-MW-4D-1115	Water	11/13/15 11:35 11/14/15 10:20
680-119038-4	PMA-MW-4S-1115	Water	11/13/15 12:05 11/14/15 10:20

EPA ARCHIVE DOCUMENT

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

MethodMethod DescriptionProtocolLaboratory680Polychlorinated Biphenyls (PCBs) (GC/MS)EPATAL SAV

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

FWD 12/30/15 TestAmerica Savannah

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Qualifiers

GC/MS Semi VOA

Qualifier

Qualifier Description

Ū

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R **CFL** Percent Recovery Contains Free Liquid

Contains no Free Liquid

CNF

Duplicate error ratio (normalized absolute difference)

DER Dil Fac

Dilution Factor

DL, RA, RE, IN

indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC MDA Decision level concentration Minimum detectable activity Estimated Detection Limit

EDL

Minimum detectable concentration

MDC MDL

Method Detection Limit

ML

Minimum Level (Dioxin)

NC

Not Calculated

Not detected at the reporting limit (or MDL or EDL if shown)

ND **PQL**

Practical Quantitation Limit

QC

Quality Control Relative error ratio

RER

Reporting Limit or Requested Limit (Radiochemistry)

RL **RPD**

Relative Percent Difference, a measure of the relative difference between two points

TEF TEQ Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

> ANDIDIDIDIS TestAmerica Savannah

Page 6 of 16

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Client Sample ID: PMA-MW-3M-1115

Date Collected: 11/13/15 10:20 Date Received: 11/14/15 10:20

Lab Sample ID: 680-119038-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	Ū	0.30		ug/L		11/19/15 15:51	12/02/15 19:19	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 19:19	1
Nonachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 19:19	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/02/15 19:19	1
Monochlorobiphenyl	0.80		0.10		ug/L		11/19/15 15:51	12/02/15 19:19	1
DCB Decachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 19:19	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 19:19	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 19:19	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 19:19	1
Trichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 19:19	· 1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	67		25-113				11/19/15 15:51	12/02/15 19:19	1

Client: Solutia Inc.

Date Received: 11/14/15 10:20

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Client Sample ID: PMA-MW-3S-1115 Lab Sample ID: 680-119038-2 Date Collected: 11/13/15 10:50

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.29	U	0.29	-	ug/L		11/19/15 15:51	12/02/15 19:48	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 19:48	1
Nonachlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/02/15 19:48	1
Octachlorobiphenyl	0.29	Ü	0.29		ug/L		11/19/15 15:51	12/02/15 19:48	1
Monochlorobiphenyl	0.50		0.098		ug/L		11/19/15 15:51	12/02/15 19:48	1
DCB Decachlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/02/15 19:48	1
Dichlorobiphenyl	0.19		0.098		ug/L		11/19/15 15:51	12/02/15 19:48	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 19:48	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 19:48	1
Trichlorobiphenyl	0.098	U	0.098	,	ug/L		11/19/15 15:51	12/02/15 19:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	79		25-113				11/19/15 15:51	12/02/15 19:48	

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Client Sample ID: PMA-MW-4D-1115

Date Collected: 11/13/15 11:35 Date Received: 11/14/15 10:20 Lab Sample ID: 680-119038-3

Matrix: Water

Method: 680 - Polychlorina Analyte		Qualifier	. RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/03/15 02:31	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/03/15 02:31	1
Nonachlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/03/15 02:31	1
Octachlorobiphenyl	0.30	U	0.30		ug/L		11/19/15 15:51	12/03/15 02:31	1
Monochlorobiphenyl	0.92		0.099		ug/L		11/19/15 15:51	12/03/15 02:31	1
DCB Decachlorobiphenyl	0.49	U	0.49		ug/L		11/19/15 15:51	12/03/15 02:31	1
Dichlorobiphenyl	0.94		0.099		ug/L		11/19/15 15:51	12/03/15 02:31	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/03/15 02:31	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/03/15 02:31	1
Trichlorobiphenyl	0.099	U	0.099		ug/L		11/19/15 15:51	12/03/15 02:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	76		25 - 113				11/19/15 15:51	12/03/15 02:31	1

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Client Sample ID: PMA-MW-4S-1115 Lab Sample ID: 680-119038-4 Date Collected: 11/13/15 12:05

Matrix: Water

Date Received: 11/14/15 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	15	7	1.5	W14"-14	ug/L		11/19/15 15:51	12/03/15 03:00	5
Hexachlorobiphenyi	16	D	0.99		ug/L		11/19/15 15:51	12/03/15 03:00	5
Nonachlorobiphenyl	2.5	U	2.5		ug/L		11/19/15 15:51	12/03/15 03:00	5
Octachlorobiphenyl	2.2	Ď	1.5		ug/L		11/19/15 15:51	12/03/15 03:00	5
Monochlorobiphenyl	2.8	D	0.50		ug/L		11/19/15 15:51	12/03/15 03:00	5
DCB Decachlorobiphenyl	2.5	U	2.5		ug/L		11/19/15 15:51	12/03/15 03:00	5
Dichlorobiphenyl	12	p	0.50		ug/L		11/19/15 15:51	12/03/15 03:00	5
Pentachlorobiphenyi	11	Ď	0.99		ug/L		11/19/15 15:51	12/03/15 03:00	5
Tetrachlorobiphenyl	18	Ó	0.99		ug/L		11/19/15 15:51	12/03/15 03:00	5
Trichlorobiphenyl	19	Ď	0.50		ug/L		11/19/15 15:51	12/03/15 03:00	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Decachlorobiphenyl-13C12	78		25-113				11/19/15 15:51	12/03/15 03:00	5

QC Sample Results

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

Method: 680 - Polychlorinated Biphenyls (PCBs) (GC/MS)

Lab Sample ID: MB 680-411127/13-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 412678

Analysis Batch: 412678								Prep Batch: 4	411127
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlorobiphenyl	0.30	Ú	0.30		ug/L		11/19/15 15:51	12/02/15 13:38	1
Hexachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 13:38	1
Nonachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 13:38	1
Octachlorobiphenyl	0.30	U .	0.30		ug/L		11/19/15 15:51	12/02/15 13:38	1
Monochlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 13:38	1
DCB Decachlorobiphenyl	0.50	U	0.50		ug/L		11/19/15 15:51	12/02/15 13:38	1
Dichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 13:38	1
Pentachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 13:38	1
Tetrachlorobiphenyl	0.20	U	0.20		ug/L		11/19/15 15:51	12/02/15 13:38	1
Trichlorobiphenyl	0.10	U	0.10		ug/L		11/19/15 15:51	12/02/15 13:38	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Faç

25-113

Lab Sample ID: LCS 680-411127/14-A

Matrix: Water

Analysis Batch: 412678

Decachlorobiphenyl-13C12

Client Sample ID: Lab Control Sample

11/19/15 15:51 12/02/15 13:38

Prep Type: Total/NA Prep Batch: 411127

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Heptachlorobiphenyl	6.00	4.76		ug/L		79	62 - 130	-
Hexachlorobiphenyl	4.00	3.15		ug/L		79	62 - 130	
Nonachlorobiphenyl	10.0	10.9		ug/L		109	70 - 195	
Octachlorobiphenyl	6.00	4.72		ug/L		79	64 - 130	
Monochlorobiphenyl	2.00	1.19		ug/L		60	42 - 130	
DCB Decachlorobiphenyl	10.0	7.43		ug/L		74	59 - 130	
Dichlorobiphenyl	2.00	1.34		ug/L		67	49 - 130	
Pentachlorobiphenyl	4.00	3.09		ug/L		77	63 - 130	
Tetrachlorobiphenyl	4.00	2.97		ug/L		74	54 - 130	
Trichlorobiphenyl	2.00	1.47		ug/L	•	74	51 - 130	

LCS LCS

76

Surrogate %Recovery Qualifier Limits Decachlorobiphenyl-13C12 77 25-113

TestAmerica Savannah

QC Association Summary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

GC/MS Semi VOA

Prep Batch: 411127

Lab Sample ID	Cilent Sample ID	Prep Type	Matrix	Method	Prep Batch
680-119038-1	PMA-MW-3M-1115	Total/NA	Water	680	
680-119038-2	PMA-MW-3S-1115	Total/NA	Water	680	
680-119038-3	PMA-MW-4D-1115	Total/NA	Water	680	
680-119038-4	PMA-MW-4S-1115	. Total/NA	Water	680	
LCS 680-411127/14-A	Lab Control Sample	Total/NA	Water	680	
MB 680-411127/13-A	Method Blank	Total/NA	Water	680	

Analysis Batch: 412678

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-119038-1	PMA-MW-3M-1115	Total/NA	Water	680	411127
680-119038-2	PMA-MW-3S-1115	Total/NA	Water	680	411127
LCS 680-411127/14-A	Lab Control Sample	Total/NA	Water	680	411127
MB 680-411127/13-A	Method Blank	Total/NA	Water	680	411127

Analysis Batch: 412775

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-119038-3	PMA-MW-4D-1115	Total/NA	Water	680	411127
680-119038-4	PMA-MW-4S-1115	Total/NA	Water	680	411127

TestAmerica Savannah

Lab Chronicle

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

FO)

Client Sample ID: PMA-MW-3M-1115

Date Collected: 11/13/15 10:20 Date Received: 11/14/15 10:20 Lab Sample ID: 680-119038-1

Matrix: Water

		Batch	Batch	Dave	Dil	Initial	Final	Batch	Prepared	A 14	1 -6
	Prep Type	Туре	Method	Run	Factor	Amount 992.1 mL	Amount 1.0 mL	Number 411127	or Analyzed 11/19/15 15:51	Analyst RBS	Lab TAL SAV
	Total/NA	Prep	680								• · · · –
į	Total/NA	Analysis	680		1	992.1 mL	1.0 mL	412678	12/02/15 19:19	NED	TAL SAV

Client Sample ID: PMA-MW-3S-1115

Date Collected: 11/13/15 10:50

Date Received: 11/14/15 10:20

Lab Sample	ID: 680-119038-2
	Matrix: Water

Lab Sample ID: 680-119038-3

Lab Sample ID: 680-119038-4

Matrix: Water

Matrix: Water

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680			1019.9 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		1	1019.9 mL	1.0 mL	412678	12/02/15 19:48	NED	TAL SAV

Client Sample ID: PMA-MW-4D-1115

Date Collected: 11/13/15 11:35

Date Received: 11/14/15 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680			1014.4 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		1	1014.4 mL	1.0 mL	412775	12/03/15 02:31	NED	TAL SAV

Client Sample ID: PMA-MW-4S-1115

Date Collected: 11/13/15 12:05

Date Received: 11/14/15 10:20

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	680			1007 mL	1.0 mL	411127	11/19/15 15:51	RBS	TAL SAV
Total/NA	Analysis	680		5	1007 mL	1.0 mL	412775	12/03/15 03:00	NED	TAL SAV

Laboratory References:

TAL SAV = TestAmerica Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

AWDIABUIS TestAmerica Savannah

TestAmerica Savannah

Chain of Custody Record

TestAn	nerica

Form No. CA-C-Wi-002, Rev. 4.3, dated 12/05/2013

5102 LaRoche Avenue

THE LEADER IN ENVIRONMENTAL TESTING Savannah, GA 31404 Regulatory Program: REN NPOEZ ROR Other: phone 912.354.7858 fax TestAmerica Laboratories, Inc. Proiect Manager: Amanda Derhake Client Contact Site Contact: Loci Bindner Date: COC No: 1113/15 Tel/Fax: 636-724-9191 Golder Associates Inc. Lab Contact: Michele Kersey Carrier: FedEx COCs of i 820 South Main Street Analysis Turnaround Time Sampler: F= (1) 14-1 CALENDAR : WORKING St. Charles, MO 63301 For Lab Use Only: (636) 724-9191 Walk-in Client Phone TAT if different from Below Standard (636) 724-9323 🛧 FAX 2 Lab Sampling: 1 week Project Name: 2015 PCB GW Sampling-1403345 2 days 689 Site: Solutia WG Krummrich Facility Job / SDG No.: 1 day O#42447936 Total PCBs by Sample Туре Sample Sample (C=Comp. # of Sample Identification Date Time G=Grab) Matrix Cont. Sample Specific Notes: 11/13/15 1020 3 050 135 1205 Presentation Used: 15 Ice. 2-1833/2-H2SQ4, 4-8NO3; 5-NaOH; 6-0806 - -÷.,, Possible Hazard Identification: e retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample. Non-Hazard Rammab Skin Poison B Unknown Return to Client Special instructions/QC Requirements & Comments: Cooler Temp. ("C): Obs'd: , Corrd: I. Therm ID No: Custody Seals Intact: Custody Seal No.: 436273 Company: Received by: Company: Date/Time: Relinquished by Date/Time 11/3/15 340 GOOLEY Date/Time: Relinguished by Date/Time Company: Company Received by: Date/Time Date/Time: Received in Laboratory by Company: Relinquished by Company:

Login Sample Receipt Checklist

Client: Solutia Inc.

Job Number: 680-119038-1

SDG Number: KPM068

List Source: TestAmerica Savannah

Login Number: 119038

List Number: 1

Creator: Kicklighter, Marilyn D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Certification Summary

Client: Solutia Inc.

Project/Site: 4Q15 PCB GW Sampling - 1403345

TestAmerica Job ID: 680-119038-1

SDG: KPM068

Laboratory: TestAmerica Savannah

The certifications listed below are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Minois	NELAP	5	200022	11-30-15 *

AWP JOHS TestAmerica Savannah

^{*} Certification renewal pending - certification considered valid.

At Golder Associates we strive to be the most respected global group of companies specializing in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

Africa + 27 11 254 4800
Asia + 852 2562 3658
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Inc. 820 S. Main Street, Suite 100 St. Charles, MO 63301 USA

> Tel: (636) 724-9191 Fax: (636) 724-9323

